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Energy Density Functionals

Build a consistent microscopic 
framework for a unified 

description of bulk properties, 
excitations and reactions! 

Ab initio:
Quantum Monte Carlo,
No-core Shell Model, 
Coupled-Cluster, ...

Configuration interaction
(Interacting Shell-Model)

Density Functionals
(self-consistent mean fields)
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Nuclear Energy Density Functionals:  the many-body problem is mapped 
onto a one body problem without explicitly involving inter-nucleon interactions!

Self-consistent Kohn-Sham DFT: includes correlations and therefore 
goes beyond the Hartree-Fock. It has the advantage of being a local scheme.

vs[ρ(r)] = v(r) + U [ρ(r)] + vxc[ρ(r)]

external potential
Hartree term

exchange-correlation

vxc[ρ(r)] =
δExc[ρ(r)]

δρ(r)
The practical usefulness of the Kohn-Sham scheme depends entirely on 
whether accurate approximations for Exc can be found!

The exact density functional is approximated with powers and gradients of 
ground-state nucleon densities and currents. 
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Local densities and currents:

T=0 density:

T=1 density:

T=0 spin density:

T=1 spin density:

ρ0(r) = ρ0(r, r) =
�

στ

ρ(rστ ; rστ)

ρ1(r) = ρ1(r, r) =
�

στ

ρ(rστ ; rστ) τ

s0(r) = s0(r, r) =
�

σσ�τ

ρ(rστ ; rσ�τ) σσ�σ

s1(r) = s1(r, r) =
�

σσ�τ

ρ(rστ ; rσ�τ) σσ�σ τ

jT (r) = i
2 (∇� −∇) ρT (r, r�)

��
r=r�

JT (r) = i
2 (∇� −∇)⊗ sT (r, r�)

��
r=r�

τT (r) = ∇ ·∇� ρT (r, r�)
��
r=r�

TT (r) = ∇ ·∇� sT (r, r�)
��
r=r�

Current:

Spin-current tensor:

Kinetic density:

Kinetic spin-density:
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Advantages of the Energy Density Functional  
approach to nuclear structure

Important for extrapolations to regions far from stability!

✔ an intuitive interpretation of mean-field results in terms of intrinsic 
shapes and single-particle states

✔ the full model space of occupied states can be used; no distinction 
between core and valence nucleons, no need for effective charges

✔  the use of universal density functionals that can be applied to 
all nuclei throughout the periodic chart
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Semi-empirical functionals

... start from a favorite microscopic nuclear matter EOS 

Infinite nuclear matter cannot determine the density functional on the level of 
accuracy that is needed for a quantitative description of structure phenomena in 
finite nuclei.

... the parameters of the functional are fine-tuned to data of finite nuclei
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Semi-empirical functionals

... start from a favorite microscopic nuclear matter EOS 

Infinite nuclear matter cannot determine the density functional on the level of 
accuracy that is needed for a quantitative description of structure phenomena in 
finite nuclei.

... the parameters of the functional are fine-tuned to data of finite nuclei

DD-PC1

... starts from microscopic nucleon self-energies in nuclear matter.

... parameters adjusted in self-consistent mean-field calculations of masses of 64 
axially deformed nuclei in the mass regions A ~ 150-180 and A ~ 230-250.
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DD-PC1
av = −16.06 MeV

as = 17.498 MeV

�S2� = 27.8 MeV (a4 = 33MeV)

volume energy:

surface energy:

symmetry energy:

... calculated masses of finite nuclei are primarily sensitive to the three leading terms 
in the empirical mass formula:

EB = avA + asA
2/3 + a4

(N − Z)2

4A
+ · · ·

... generate families of effective interactions characterized by different values of av, as 
and a4, and determine which parametrization minimizes the deviation 
from the empirical binding energies of a large set of deformed nuclei.
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Deformed nuclei

Z 62 64 66 68 70 72 90 92 94 96 98
Nmin 92 92 92 92 92 72 140 138 138 142 144
Nmax 96 98 102 104 108 110 144 148 150 152 152

Binding energies used to adjust the parameters of the functional:

-3

-2

-1

0

1

2

3

0.020 0.030 0.040 0.050 0.060

E 
(M

eV
)

2

(a)

av=-16.06 MeV -3

-2

-1

0

1

2

3

140 160 180 200 220 240 260

E 
(M

eV
)

A

(b)
Sm
Gd
Dy
Er
Yb
Hf
Th
U

Pu
Cm
Cf

Monday, November 15, 2010



5.0

5.1

5.2

5.3

5.4

5.5

150154158162166170174

r c
 (

fm
)

A

Er (e)

DD-PC1
DD-ME2

EXP
5.1

5.2

5.3

5.4

5.5

5.6

158 162 166 170 174 178

A

Yb (f)

5.0

5.1

5.2

5.3

5.4

146 150 154 158 162

r c
 (

fm
)

Gd (c)

5.0

5.1

5.2

5.3

5.4

146 150 154 158 162 166

Dy (d)

4.9

5.0

5.1

5.2

5.3

136 140 144 148 152

r c
 (

fm
)

Nd (a)

4.9

5.0

5.1

5.2

5.3

5.4

140 144 148 152 156 160

Sm (b)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

150154158162166170174

!
2

A

Er (e)

0.1

0.2

0.3

0.4

158 162 166 170 174 178

A

Yb (f)

DD-PC1
DD-ME2

EMP

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

146 150 154 158 162

!
2

Gd (c)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

146 150 154 158 162 166

Dy (d)

-0.1

0.0

0.1

0.2

0.3

0.4

134 138 142 146 150 154

!
2

Nd (a)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

140 144 148 152 156 160

Sm (b)

Charge radii Quadrupole deformations

Systematic calculation of ground-state properties:
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Nuclear Many-Body Correlations

short-range
(hard repulsive core of 
the NN-interaction)

long-range 
nuclear resonance 
modes 
(giant resonances)

collective correlations
large-amplitude soft modes:
(center of mass motion, rotation,
low-energy quadrupole vibrations)
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Nuclear Many-Body Correlations

short-range
(hard repulsive core of 
the NN-interaction)

long-range 
nuclear resonance 
modes 
(giant resonances)

collective correlations
large-amplitude soft modes:
(center of mass motion, rotation,
low-energy quadrupole vibrations)

...vary smoothly with nucleon number!
Can be included implicitly in an effective 
Energy Density Functional.

...sensitive to shell-effects and strong variations 
with nucleon number!
Cannot be included in a simple EDF framework.  
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Shape-coexistence in neutron-deficient Kr isotopes
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Five-dimensional collective Hamiltonian

... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom

Hcoll = Tvib(β, γ) + Trot(β, γ,Ω) + Vcoll(β, γ)

Tvib =
1
2
Bββ β̇2 + βBβγ β̇γ̇ +

1
2
β2Bγγ γ̇2

Trot =
1
2

3�

k=1

Ikω2
k
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Five-dimensional collective Hamiltonian

... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom

Hcoll = Tvib(β, γ) + Trot(β, γ,Ω) + Vcoll(β, γ)

Tvib =
1
2
Bββ β̇2 + βBβγ β̇γ̇ +

1
2
β2Bγγ γ̇2

Trot =
1
2

3�

k=1

Ikω2
k

The quasiparticle wave functions and energies generated from constrained self- consistent 
solutions of the RHB model, provide the microscopic input for the parameters of the 
collective Hamiltonian.
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Rapidly-changing shapes in the N=28 isotones
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Fluctuations of quadrupole deformation parameters 
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Neutron-rich nuclei → predicted occurrence of a collective soft
dipole mode (Pygmy Dipole Resonance)
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Exotic modes of excitations 
Evolution of low-lying collective modes
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Low-lying E1 strength in Ni isotopes
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Low-energy dipole response at finite temperature
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Thermal unblocking of single-particle orbitals close to the Fermi level.
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✔ unified microscopic description of the structure of stable and
nuclei far from stability,  and reliable extrapolations toward the 
drip lines.

Nuclear Energy Density Functional Framework

✔ when extended to take into account collective correlations, 
it describes deformations and shape-coexistence phenomena 
associated with shell evolution.

✔ fully self-consistent (Q)RPA analysis of giant resonances, low-energy 
multipole response in weakly-bound nuclei, dynamics of exotic modes of 
excitation.
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