SELF-CONSISTENT CONTINUUM RANDOM PHASE APPROXIMATION CALCULATIONS SPES 2010 Workshop & IV LEA-COLLIGA Meeting Legnaro, 15-19 November 2010

V. DE DONNO, G. CO' M. ANGUIANO, A. M. LALLENA

University of Salento and INFN Lecce (Italy) University of Granada (Spain)

EUROPE

SPES, LNL - 2015 SPIRAL2, Caen -2015 FAIR,GSI <2020 ISOLDE, CERN - operating HIE-ISOLDE,CERN <2020 EURISOL - 2020

JAPAN RIBF, RIKEN - operating

AMERICA

HRIBF, Oak Ridge National Laboratory- operating FRIB, Michigan State University <2020 RIBRAS, São Paulo Pelletron Laboratory- operating

Aim:

How can we give predictions about ground and excited states of unstable nuclei?

Microscopic calculation: Helium

Data:

- T. Shima et al., Phys. Rev. C 72 (2005) 044004
- B. Nilsson et al., Phys. Lett. B 626 (2005) 65;Yu. M. Arkatov et al. Yad. Konst. 4 (1979) 55.

LIT: D. Gazit at al., Phys. Rev. Lett. 96 (2006) 112301; G. Orlandini, priv. comm.

V. DE DONNO Continuum RPA

$$H|\Psi>={\ensuremath{\textit{E}}}|\Psi>$$
 $H^{
m eff}|\Psi^{
m eff}>={\ensuremath{\textit{E}}}|\Psi^{
m eff}>$

Random Phase Approximation

$$ert
u >= Q_
u^\dagger ert 0 > Q_
u ert 0 >= 0$$
 $Q_
u^\dagger = \sum_{ph} X_{ph} a_p^\dagger a_h - \sum_{ph} Y_{ph} a_h^\dagger a_p$

$$(\epsilon_{p} - \epsilon_{h} - \omega)X_{ph} + \sum_{p'h'} [v_{ph,p'h'}X_{p'h'} + u_{ph,p'h'}Y_{p'h'}] = 0$$

$$(\epsilon_{p} - \epsilon_{h} + \omega)Y_{ph} + \sum_{p'h'} [u_{ph,p'h'}^{*}X_{p'h'} + v_{ph,p'h'}^{*}Y_{p'h'}] = 0$$

$$\begin{array}{lll} v_{ph,p'h'} &=& < ph'|V|hp'> - < ph'|V|p'h> \\ u_{ph,p'h'} &=& < pp'|V|hh'> - < pp'|V|h'h> \end{array}$$

MF and RPA

Input

Single particle wavefunctions Single particle energies Effective nucleon-nucleon interaction

Input

Single particle wavefunctions from Woods-Saxon potentials Experimental single particle energies (when available) Effective nucleon-nucleon interaction chosen to reproduce some empirical quantity.

The input changes for each nucleus.

Input

Single particle basis taken from Hartree Fock (HF) calculations The same interaction is used in HF and RPA

A unique interaction for all the nuclei

Sensitivity to configuration space in the continuum

Data: R. Buti et al., Phys. Rev. C 33 (1986) 755

Continuum Random Phase Approximation

$$\begin{aligned} Q_{\nu}^{\dagger} &= \sum_{ph,\epsilon_{p}<0} X_{ph}(\epsilon_{p}) a_{p}^{\dagger} a_{h} - \sum_{ph,\epsilon_{p}<0} Y_{ph}(\epsilon_{p}) a_{h}^{\dagger} a_{p} \\ &+ \sum_{[p]h} \int d\epsilon_{p} X_{ph}(\epsilon_{p}) a_{p}^{\dagger} a_{h} - \sum_{[p]h} \int d\epsilon_{p} Y_{ph}(\epsilon_{p}) a_{h}^{\dagger} a_{p} \end{aligned}$$

problem: integration to infinity

Continuum Random Phase Approximation

new unknowns

$$f_{[p],h}(r) = \sum_{\epsilon_p = \epsilon_F}^{0} X_{ph}(\epsilon_p) R_p(r, \epsilon_p) + \int d\epsilon_p X_{ph}(\epsilon_p) R_p(r, \epsilon_p)$$
$$g_{[p],h}(r) = \sum_{\epsilon_p = \epsilon_F}^{0} Y_{ph}(\epsilon_p) R_p(r, \epsilon_p) + \int d\epsilon_p Y_{ph}(\epsilon_p) R_p(r, \epsilon_p)$$

system of integro differential equations

Sturmian functions

$$\Phi_{p}^{\mu}(r \to \infty) \to \lambda H_{p}^{-}(\epsilon_{p}, r) \qquad se \ \epsilon_{p} > 0$$

$$\Phi_{p}^{\mu}(r \to \infty) \to \chi \frac{1}{r} exp\left(-r\left(\frac{2m|\epsilon_{p}|}{\hbar^{2}}\right)^{\frac{1}{2}}\right) \qquad se \ \epsilon_{p} < 0$$

expansion of f and g on **STURM-BESSEL** function basis \Rightarrow algebraic system with expansion coefficient unknowns

M.Buballa, S. Drożdż, S. Krewald, J.Speth, Ann. of Phys. 208 (1991) 346.

Nucleon-Nucleon Interaction

- Gogny-like interaction
- finite range
- zero-range Spin-Orbit term
- zero-range Density dependent term
- 14 parameters chosen with a fit of about 2000 nuclear binding energies and 700 charge radii.

Two parametrizations

-D1S: J. F. Berger et al., Comp. Phys. Comm. 63 (1991) 365 -D1M: S. Goriely et al.: Phys. Rev. Lett. 102 (2009) 252501

Continuum versus Discrete RPA: 1⁻ Oxygen chain

Continuum versus Discrete RPA: 2⁺ Oxygen chain

Centroid energies in MeV

	discrete	continuum
1-		
¹⁶ O	28.27	28.58
²² O	27.34	27.43
²⁴ 0	26.08	26.18
2+		
¹⁶ O	67.99	45.45
²² 0	68.77	44.87
²⁴ 0	67.54	44.21

RPA versus MF

1⁻ data: J. Ahrens et al., Nucl. Phys. A 251 (1975) 479.

2⁺ data: K. T. Knöpfke et al., Phys. Rev. Lett. 35 (1975) 779

Self consistent versus Phenomenological approach: Oxygen chain

1⁻ data: J. Ahrens et al., Nucl. Phys. A 251 (1975) 479.

2⁺ data: K. T. Knöpfke et al., Phys. Rev. Lett. 35 (1975) 779

- Our continuum RPA technique allows us to do calculations with interactions with finite range and tensor channel.
- **2** The D1S and D1M forces produce very similar results.
- Comparison with MF calculations: MF does not predict the presence of giant resonances.
- Comparison with discrete RPA: need of a correct treatment of the continuum in self-consistent calculations.
- Comparison with phenomenological CRPA: inadequacy of the phenomenological approach in the study of nuclei lying in experimentally unexplored parts of the nuclear isotope chart.

- Self-consistent CRPA calculations describe rather well the experimental positions of the giant resonances peaks, both for the 1⁻ and 2⁺ excitations.
- On the other hand, the strengths distibutions are incorrect, and the problem could be solved by considering the excitation of two particles-two holes pairs.