Population of Neutron-rich Nuclei around ${ }^{48} \mathrm{Ca}$ with Deep Inelastic Collisions

D. Montanari - Università degli Studi di Padova - INFN PD

```
    D.Montanari }\mp@subsup{}{}{1*}\mathrm{ , S.Leoni }\mp@subsup{}{}{1,2},\mp@subsup{L}{L.Corradi }{}\mp@subsup{}{}{3}\mathrm{ , G.Pollarolo }\mp@subsup{}{}{4}\mathrm{ , G.Benzoni }\mp@subsup{}{}{2}\mathrm{ , N.Blasi }\mp@subsup{}{}{2}\mathrm{ , A.Bracco }\mp@subsup{}{}{1,2}\mathrm{ , F. Camera }\mp@subsup{}{}{1,2}
    A.Corsi }\mp@subsup{}{}{1,2}\mathrm{ , F.C.L.Crespi }\mp@subsup{}{}{1,2}\mathrm{ , B .Million }\mp@subsup{}{}{2}, R. Nicolini 1,2, O.Wieland ' , G.de Angelis ' , F. Della Vedova ', 
    E.Fioretto }\mp@subsup{}{}{3}\mathrm{ , A.Gadea }\mp@subsup{}{}{5}\mathrm{ , B.Guiot }\mp@subsup{}{}{3}\mathrm{ , D.Mengoni }\mp@subsup{}{}{3,6}\mathrm{ , D.R. Napoli }\mp@subsup{}{}{3}\mathrm{ , R.Orlandi }\mp@subsup{}{}{3\dagger}\mathrm{ , F.Recchia }\mp@subsup{}{}{7}\mathrm{ , A.M.Stefanini }\mp@subsup{}{}{3}\mathrm{ ,
    R.P.Singh }\mp@subsup{}{}{3}\mathrm{ , J.J.Valiente-Dobon }\mp@subsup{}{}{3}\mathrm{ , D.Bazzacco }\mp@subsup{}{}{8}\mathrm{ , E.Farnea }\mp@subsup{}{}{8}\mathrm{ , S.M.Lenzi}\mp@subsup{}{}{7,8},\mp@subsup{\mathrm{ S.Lunardi }}{}{7,8}\mathrm{ , G.Montagnoli}\mp@subsup{}{}{7,8}
F.Scarlassara}\mp@subsup{}{}{7,8},\mp@subsup{\mathrm{ C.Ur}}{}{8}\mathrm{ , G. Lo Bianco }\mp@subsup{}{}{9}\mathrm{ , A.Zucchiatti }\mp@subsup{}{}{10}\mathrm{ , S.Szilnerr }\mp@subsup{}{}{11}\mathrm{ , M. Kmiecik}\mp@subsup{}{}{12}\mathrm{ , A. Maj }\mp@subsup{}{}{12}\mathrm{ , W. Meczynski }\mp@subsup{}{}{12
                        1 University of Milano, Milano, Italy
                            2 INFN, Sezione di Milano, Milano, Italy
                            { } ^ { 3 } \text { Laboratori Nazionali di Legnaro, Padova, Italy}
    { } ^ { 4 } \text { University of Torino and INFN, Sezione di Torino, Italy}
                    { } ^ { 5 } \text { CSIC-IFIC, Valencia, Spain}
        * University of the West of Scotland, Paisley, UK
            7 University of Padova, Padova, Italy
            8 INFN, Sezione di Padova, Padova, Italy
        9 University of Camerino and INFN, Sezione di Perugia, Italy
            10 INFN sezione di Genova, Genova, Italy
        { } ^ { 1 1 } \text { Ruđder Bošković Institute, Zagreb, Croatia and}
        1 2 \text { The Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland}
```

LEA-COLLIGA - LNL - 18/19 Februrary 2010

Multi-nucleon transfer reactions among heavy ions

Energy range \geq Coulomb barrier

```
Degrees of freedom
- single particle states
- surface vibrations
- pair modes
```

Many transfer channels available
Importance of particle and pair transfer

Inclusive interpretation of data: semi-classical model GRAZING

- Sequential transfer
- Surface modes

The PRISMA-CLARA experimental setup

Laboratori Nazionali di Legnaro - INFN

The PRISMA magnetic spectrometer

Optics:

Detectors:

- quadrupole magnet
- entrance detector (MCP)
- focal plane detector (MWPPAC)
- dipole magnet
- ionization chamber (IC)

The multi-detector array CLARA

Isotope Selection

```
48}\textrm{Ca}+\mp@subsup{}{}{64}\textrm{Ni}\mathrm{ at 282 MeV
```

```
48}\textrm{Ca}+\mp@subsup{}{}{64}\textrm{Ni}\mathrm{ at 282 MeV
```

E [Arb.units]

Mass distributions
 Reaction studies

Gamma spectra
Nuclear structure

Response Function

Correction of Data

Measurement of Cross Sections

(1) Elastic scattering of ${ }^{48} \mathrm{Ca}$ (exp + theory)
(2) Inclusive angular distributions $\mathrm{d} \sigma / \mathrm{d} \Omega$ (exp + theory)
(3) Angular distributions of specific states (exp + theory)

Transport of the magnetic spectrometer PRISMA

Monte Carlo simulation based on the ray tracing code originally developed by A. Latina and E. Farnea

Generation of Monte Carlo
INPUT events distribution in $\left[\mathrm{E}_{\mathrm{kin}}, \theta, \phi\right]$

Transport event by event in PRISMA

Response of PRISMA

$$
\mathbf{R}(\mathbf{E}, \theta, \phi)=\frac{\text { \# OUTPUT Events }}{\text { \# INPUT Events }}
$$

Sorting of transported events by PRISMA Analysis software package (GSORT)

Response of PRISMA

Correction Factor

$$
R\left(\vartheta_{l a b}, \varphi_{l a b}, K\right)=\frac{N_{o}}{N_{i}} \quad f\left(\vartheta_{l a b}, K\right)=\frac{1}{R\left(\vartheta_{l a b}, K\right)}
$$

$\mathrm{N}_{0}=$ output distribution
$\mathbf{N}_{\mathrm{i}}=$ input distribution

${ }^{48}$ Ca

Test of the calculated response with INPUT theoretical distributions

$(\mathrm{d} \sigma / \mathrm{d} \Omega \mathrm{dE})_{\mathrm{GRAZING}} \leftrightarrow(\mathrm{d} \sigma / \mathrm{d} \Omega \mathrm{dE})_{\mathrm{GRAZING}-T \mathrm{Transp}} * \mathrm{f}(\mathrm{E}, \theta)$

Starting point: measurement of σ_{el} for Elastic Scattering

S.Szilner et al., PRC 76 (2007)

Absolute measurement of cross sections

RATIO between Elastic and Rutheford scattering cross sections

$$
C=1 \frac{m b}{s r}=2580 \text { counts }
$$

Inclusive angular distribution: 1 nucleon transfer

Experiment vs GRAZING

Good agreement with semiclassical model for

1 nucleon transfer channels

Inclusive angular distribution: all reaction products

Angular distribution of inelastic scattering

$$
T K E L=K^{i}-K^{f}=Q_{g g}+E_{b}^{*}+E_{B}^{*}
$$

Total projections

Angular distribution of inelastic scattering: 2^{+}state

Difference

Angular distribution of TRANSFER to SPECIFIC STATES

Transfer to ground state

$$
\frac{d \sigma}{d \Omega}=S_{C a} \times S_{N i} \times\left(\frac{d \sigma}{d \Omega}\right)_{D W B A}
$$

	Spin $[\hbar]$	State	Energy $[\mathrm{keV}]$	S
${ }^{49} \mathrm{Ca}$	$3 / 2-$	$\mathrm{p}_{3 / 2}$	0	0.84
	$1 / 2-$	$\mathrm{p}_{1 / 2}$	2021	0.91
	$5 / 2-$	$\mathrm{f}_{5 / 2}$	3991	0.84
${ }^{63} \mathrm{Ni}$	$1 / 2-$	$\mathrm{p}_{1 / 2}$	0	0.235
	$5 / 2-$	$\mathrm{f}_{5 / 2}$	87	0.572
	$3 / 2-$	$\mathrm{p}_{3 / 2}$	156	0.605
	$3 / 2-$	$\mathrm{p}_{3 / 2}$	518	0.205
	$1 / 2-$	$\mathrm{p}_{1 / 2}$	1002	0.260
	$9 / 2+$	$\mathrm{g}_{9 / 2}$	1294	0.082

Limited by: Energy resolution ($\approx 2.5 \mathrm{MeV}$) gamma coincidences ($M_{\gamma} \approx 1$)

Angular distribution of TRANSFER to SPECIFIC STATES

Transfer to ground state

PRISMA
PRISMA
PRISMA.and.CLARA
PRISMA.and.CLARA
Difference
Difference

Angular distribution of TRANSFER to SPECIFIC STATES

Transfer to excited states

Angular distribution of TRANSFER to SPECIFIC STATES

Transfer to excited states

$$
\frac{d \sigma}{d \Omega}=S_{C a} \times S_{N i} \times\left(\frac{d \sigma}{d \Omega}\right)_{D W B A}
$$

	Spin $[\hbar]$	State	Energy $[\mathrm{keV}]$	S
${ }^{49} \mathbf{C a}$	$3 / 2-$	$\mathrm{p}_{3 / 2}$	0	0.84
	$1 / 2-$	$\mathrm{p}_{1 / 2}$	2021	0.91
	$5 / 2-$	$\mathrm{f}_{5 / 2}$	3991	0.84
${ }^{63} \mathbf{N i}$	$1 / 2-$	$\mathrm{p}_{1 / 2}$	0	0.235
	$5 / 2-$	$\mathrm{f}_{5 / 2}$	87	0.572
	$3 / 2-$	$\mathrm{p}_{3 / 2}$	156	0.605
	$3 / 2-$	$\mathrm{p}_{3 / 2}$	518	0.205
	$1 / 2-$	$\mathrm{p}_{1 / 2}$	1002	0.260
	$9 / 2+$	$\mathrm{g}_{9 / 2}$	1294	0.082

Feasibility of studies of transfer reactions to specific nuclear states with heavy-ions

Possible evaluation of spectroscopic factors with better experimental conditions

Spectroscopic studies - gamma angular distributions

R. Broda, J.Phys.G32(2006)R151 MNT \& Thick target data

CONCLUSION

(1) Extensive Experimental Analysis of Inclusive Angular Distribution of

$$
{ }^{48} \mathrm{Ca}(@ 6 \mathrm{MeV} / \mathrm{A}) \text { on }{ }^{64} \mathrm{Ni}
$$

(2) Evaluation of response function of PRISMA (basic information of the spectrometer)
(3) Interpretation of the data with GRAZING semiclassical model: good agreement for 1 nucleon transfer channels
(4) Comparison between theory (DWBA) and experiment for the inelastic scattering and for the transfers to the ground state and to excited states of the +1 n channel
(5) Possibility offered by heavy ion reactions to obtain information on nuclear structure (spectroscopic factors)
(5) Perspectives: heavy-ions reactions with exotic nuclei and new generation gamma array

The End

The PRISMA magnetic spectrometer

Characteristics of PRISMA

Solid angle	$\Delta \Omega$	≈ 80	msr
Azimuthal acceptance	$\Delta \vartheta_{l a b}$	$\approx \pm 6$	$\mathrm{deg}{ }^{1}$
Polar acceptance	$\Delta \varphi_{\text {lab }}$	$\approx-$	$\operatorname{deg}{ }^{2}$
Energy acceptance	ΔK	$\approx \pm 20$	$\%$
Momentum acceptance	Δp	$\approx \pm 10$	$\%$
Z resolution	$\Delta Z / Z$	$\approx 1 / 60$	-
A resolution	$\Delta A / A$	$\approx 1 / 200$	-

1 on the horizontal axis passing by the centre of the MCP.
2 depending on the angular position of PRISMA.

The experiment $-{ }^{48} \mathrm{Ca}+{ }^{64} \mathrm{Ni}$ at 282 MeV

May 2007, PRISMA-CLARA experiment

PRISMA at 20°

Reaction	${ }^{48} \mathbf{C a}+{ }^{64} \mathrm{Ni}$	
Target thickness	0.98	$\mathrm{mg} / \mathrm{cm}^{2}$
Target angle	45	deg
$\mathrm{E}_{\text {lab }}$	282.0	MeV
$\mathrm{E}_{\text {lab }} / \mathrm{A}$	5.9	$\mathrm{MeV} / \mathrm{A}$
$\mathrm{E}_{\text {cm }}$	162.3	MeV
$\mathrm{V}_{\text {coul }}$	70.1	MeV
$\left(\mathrm{E}_{\text {loss }}\right)_{\text {lab }}$	7.9	MeV
v/c	≈ 10	$\%$
$\mathrm{v} / \mathrm{c}_{N i}$	≈ 2	$\%$

Statistics in 6 days of beam time

Raw data (PRISMA)	$4.24 \cdot 10^{8}$
Raw data (CLARA)	$3.21 \cdot 10^{8}$

> Population of many isotopic chains from $-3 p(\mathrm{Cl})$ to $+2 \mathrm{p}(\mathrm{Ti})$

Trigger condition	Rate $[\mathrm{kHz}]$
	$\left(\mathrm{I}_{\text {beam }}=1 \mathrm{pnA}\right)$
MCP.and.MWPPAC	-
MCP.and. $\gamma-\gamma$	150
MWPPAC.and. γ	1500
DANTE.and. $\gamma-\gamma$	1600

Presorting of the data

PRISMA data - Trajectory reconstruction

Measured

- the spacial entrance coordinates on the MCP: $\left(\mathrm{x}_{i}, \mathrm{y}_{i}\right)$;
- the spacial coordinates on the focal plane (MWPPAC): $\left(\mathrm{x}_{f}, \mathrm{y}_{f}\right)$;
- the time of flight of the ions between the MCP and the MWPPAC: TOF;
- the partial and total energy released in the IC: $(\Delta \mathrm{E}, \mathrm{E})$.

Reconstructed

- the length of the trajectories of the ions: L;
- the curvature radius inside the dipole magnet: R ;
- the total energy released in the ionisation chamber: E;
- the range of the ions in the IC: r.

PRISMA data - Ions identification

Selection of the atomic number Z

$$
\frac{d E}{d x} \propto \frac{m Z^{2}}{E} \ln \frac{E}{m}
$$

Identification of the charge state q
$\frac{m}{q}=B \frac{R_{d}}{v}$

$$
\frac{1}{2} m v^{2}=q B R_{d} v
$$

First Step

Check of Magnetic Fields

The charge states deflection in the simulation has to be the same as in the experiment

Second Step

Transport in PRISMA of a uniform distribution in $\left(\mathrm{E}_{\mathrm{k}}, \boldsymbol{\theta}, \boldsymbol{\phi}\right)$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{K}} & =[200,400] \mathrm{MeV} \\
\vartheta & =\left[10^{\circ}, 40^{\circ}\right] \\
\varphi & =\left[-40^{\circ}, 40^{\circ}\right]
\end{aligned}
$$

$Q=18^{+}$

$\mathrm{Q}=16^{+}$

Mass distribution

Input theoretical distribution \rightarrow Mixing of masses

Ca isotopes

Good mass resolution in both experiment and simulation

Presorting of the data - Trajectory reconstruction

- a straight line from the target to the quadrupole entrance, $L_{m c p}$;
- a hyperbolic path inside the quadrupole magnet up to its exit, $L_{q u a d}$;
- a straight line to the dipole magnet entrance, L_{Q-D};
- a circular trajectory in the horizontal dispersion plane of the dipole magnet up to the dipole exit, $L_{d i p}$;
- a straight line in the dispersion plane from the exit of the dipole magnet up to the focal plane, $L_{p p a c}$.

$$
L=L_{m c p}+L_{q u a d}+L_{Q-D}+L_{d i p}+L_{p p a c}
$$

Gamma Spectra - Comparison With DIC at Lower Energy

R.Broda, J.Phys. G 32 (2006)

${ }_{20}^{47} \mathrm{Ca}_{27}$

- Known transitions

In RED: transitions

 not seen in deep inelastic reactions$$
\text { at lower } E_{\text {beam }}
$$

Gamma Spectra - Comparison With DIC at Lower Energy

Background subtraction

TAC Ge-Prisma Time

