The FARCOS project

Collaboration: INFN (Italy), GANIL (France),

Un. Huelva (Spain)... open

Synergies: NSCL-MSU (USA), WMU (USA)

FARCOS: Femtoscope ARray for COrrelations and Spectroscopy

Angular resolution: ~0.2° at d=60 cm

Farcos array features

- High angular resolution (<0.5°):
- Detect both light and heavy fragments
- Flexibility: allow coupling to
 - -4π detectors, magnetic spectrometers, other correlators
 - Neutron detectors for n-p correlations (future
 - Transportability (different laboratories)
- Low energy experiments (Ex.: Spiral2, Spes)
 - pulse-shape on silicon and digitalization, interface to Fazia project
- Large density of channels (integrated electronics...)

Farcos as a "modular correlator"

Event characterization (4π)

Coupling to 4π detectors for dynamics studies (LNS, GANIL, NSCL-MSU, ...)

Coupling to magnetic spectrometers, n-det, ...

Interface to next-generation detectors: Fazia, ...

Physics case: <u>dynamics</u> and <u>spectroscopy</u>

- 1. Dynamics: Femtoscopy and imaging in heavy-ion collisions
- 2. Spectroscopy of exotic nuclei:
 - In heavy-ion collisions
 MPCS: Multi-Particle Correlation Spectroscopy
 - In direct reactions

Heavy-Ion collisions Complex but rich systems

Dynamics/Thermodynamics

EoS, Asy-EoS, Fusion/Fission, DIC, ...

Spectroscopy

Unbound states, spins, branching ratios, sequential decay modes

Density dependence of the asymmetry term in nuclear EoS

???

$$E(\rho, \delta) \approx E(\rho, \delta = 0) + E_{sym}(\rho) \cdot \delta^2$$

$$\left(\delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}\right)$$

B.A. Li et al., Phys. Rep. 464, 113 (2008)

Many approaches... large uncertainties

Microscopic many-body, phenomenological, variational

Symmetry Energy: who cares?

Producing density gradients

 ρ/ρ_0 (a. u.)

Intermediate energies

- Different degrees of freedom freeze-out at different times When and where are particles produced?
- Need space-time probes
 - ==> HBT, Femtoscopy

HBT in heavy-ion collisions

High angular resolution required!

Extracting the emitting source function

$$R(\vec{q}, \vec{P}) = \int d\vec{r} \cdot S_{\vec{P}}(\vec{r}) \cdot K(\vec{r}, \vec{q})$$
 Koonin-Pratt Equation

Source function: probability of emitting a pair of particles separated by r (when the second one is emitted)

• If $t_1 \neq t_2$ (no simultaneous emmission)

function

 (θ,ϕ) resolution, large solid-angle, statistics, modularity (E_{beam})

Imaging correlations, "Femtoscopy"

"Femtoscopy" - measuring sizes $\Delta r \sim 1$ fm and times $\Delta t \sim 10^{-21}$ s

Source profile: probes of microscopic models

Image space-time profiles S(r) vs Model predictions

Probe transport properties:

- EoS, AsyEoS
- NN cross section in medium

Symmetry energy and imaging

Density dependence of the symmetry energy affects the shape of the two-proton source profile

IBUU: 52Ca+48Ca E/A=80 MeV

Asy-stiff: more localized source

Future perspective: nn, np, pp correlations

Correlation functions

Proposal for an open discussion

Can we profit from the presence of EDEN in Catania to study np, nn and pp correlations?

Complex particle correlations

Different particles emitted by different sources and at different times (hierarchy) - multiple imaging (future perspective)

Event characterization required ! ==> Coupling to 4π mandatory

Possible experiments with Farcos

Reactions:

^{40,48}Ca+^{40,48}Ca E/A=25-100 MeV

^{112,124}Sn+^{112,124}Sn E/A=25-100 MeV

Radioactive beams (larger N/Z-range)

Laboratories:

- •LNS (Chimera + Correl)
- •GANIL (Indra + Correl)
- •MSU (μBall + Correl)

Event characterization (Chimera)

Future perspectives:

- Low energy experiments at LNL and Spes
- Coupling to neutron detectors (np, pp, nn correlations)

Low energy HIC Isospin effects on femtoscopy

- Important: low thresholds and measure very low q-values!
- Applications in structure studies (α -n clustering of exotic nuclei, halos, exotic shapes, exotic decays) multiple particle correlations

Multi-Particle Correlation Spectroscopy (MPCS)

HIC and correlations as a spectroscopic tool

MPCS in heavy-ion collisions

Accessing spins and branching ratios (sequential decay paths) Multi- α correlations: Hoyle and Boson condensate states

2α-2p correlations: states in ¹⁰C*

Disentangle sequential decay paths

Direct reactions with RIBs

Use the array in stand-alone mode or couple it to other detectors

Spectroscopy: "stand-alone" mode

Direct reactions in inverse kinematics

Ex: Must2 expts

⁸He beam @ Spiral (GANIL) E/A=15.4 MeV

$$^{8}\text{H} + \text{p} \rightarrow ^{7}\text{He} + \text{d}$$

$$^{8}\text{H} + \text{p} \rightarrow ^{6}\text{He} + \text{t}$$

Similar experiments at LNS (FRIBS), GANIL, Spiral/Spiral2, Spes

At low energies pulse shape on 1st silicon may be relevant

Spectroscopy: "coupling" mode

FRIBS beams at the LNS of Catania

Day-1 experiment at the INFN-LNS

- Other options: coupling to Magnex
- Farcos for the light particle and Magnex for the heavy core
- $\Box \gamma$ -ray detector

So what?

- Reinforce international efforts towards femtoscopy at low and intermediate energies
- Dynamics and spectroscopy
- Farcos array in Catania (a simple project)
 - Angular resolution ($\delta\theta,\delta\phi<1^{\circ}$), Pulse-shape for low E experiments, Flexibility, modularity, transportability: coupling to 4π detectors, spectrometers, n-det
 - Interfacing to other projects: Fazia, other si-strip arrays
- Integrated electronics: internationally based working groups

Workshop in 2011

- Catania, probably spring or early fall 2011
 - Integrated electronics for silicon detectors, present and future solutions

You are all very welcome: need to build up synergies