Piotr Bednarczyk

Instytut Fizyki Jądrowej ^{im. Henryka Niewodniczańskiego} Polskiej Akademii Nauk

SPES LETTER OF INTENT

High spin γ -ray spectroscopy of heavy, octupole deformed Ac and Fr nuclei produced in fusion-evaporation reactions with the intense A~90 Rb radioactive beams at SPES

Collaboration

<u>P.Bednarczyk</u>, M.Ciemała, B.Fornal, M.Kmiecik, A.Maj, M.Matejska-Minda, W.Męczyński, H. Niewodniczański Institute of Nuclear Physics PAN, Kraków, Poland

> M.Palacz, G. Jaworski, HIL, University of Warsaw, Poland,

> > D.Curien, J.Dudek, IPHC, Strasbourg, France,

G. de Angelis, J. Valiente, E. Sahin, D.R. Napoli, A. Pipidis LNL, Legnaro, Italy,

F. Recchia, S. Lunardi, A. Gottardo, E. Farnea, S. Lenzi, C. Michelagnoli, C. Ur, D. Bazzacco, R.Menegazzo, INFN sezione di Padova, Padova, Italy,

> A.Bracco, G. Benzoni, F. Camera, S.Leoni, B. Million. O. Wieland, Università degli Studi and INFN sezione di Milano, Milano, Italy

Test of feasibility

Fusion-evaporation
The strongest available beam
Efficient gamma and ancillary detector setup
Interesting physics case...

							pps
1	THE .	00	57	51	1.076103	2,2121110	THEFTOD
	Rb	89	37	52	9.09E+02	4,75E+10	9.50E+08
	Rb	90	37	53	1.58E+02	9,62E+10	1,92E+09
	Rb	91	37	54	5.84E+01	9,62E+10	1,92E+09
	Rb	92	37	55	4.49E+00	5,09E+10	1,02E+09
	Rb	93	37	56	5.84E+00	3,38E+10	6,76E+08
	Rb	94	37	57	2.70E+00	1,37E+10	2,74E+08

Estimated beam intensities with BEST Cyclotron@SPES Protons on direct target: E_p=40MeV, Current on target 200 μA UCx target; other targets shown in "Comments"

i~ 0.3 pnA

Onset of octupole deformed shapes in actinides at N=130, Z=86

Experimental investigation of alternative parity bands in actinides

Alternative use of a symmetric reaction with a RIB

Increase of angular momentum

High spin states: ¹³⁰Te(⁹²Rb, 4*n*)²²⁰Ac

 $E_{b} = 370 MeV, v/c > 4\%$

γ -spectroscopy at high spin and temperture

Recoil Filter Detector - Principle of Operation

 RFD is a HI (ancillary) detector that measures evaporation residues in coincidence with γrays detected in a germanium array

 Time-of-Flight technique is applied to select the evaporation residues in an event-by-event mode

RFD coupled with GASP

- Installation at GASP 2008
- Experiments 2009

HI Detection Technique

18 individual detectors
 ToF = 50 -700 ns
 <β>= 0.5 -7%

€~50%

- Detectors don't 'see' directly the target position
- Scintillators are far from the beam line

Improvement of γ -spectra by a coincident recoil detection (with RFD)

92 MeV ¹⁶O + 0.4 mg/cm² ²⁰⁸Pb

68 MeV¹⁸O + 0.8 mg/cm² ³⁰Si

Heavy systems:

✓ fission background reduction
 ✓ low cross sections σ ~ 0.1 mbarn

Large recoil velocity:
✓ reduction of the Doppler broadening

Estimation of a short lifetime based on the recoil velocity measurement

- Energy of a γ-ray emitted in a target (B) is not sufficiently Doppler corrected
- A level lifetime can be expressed by number of decays in vacuum (A) relative to a total γ-line intensity (A+B)

Perspectives at RIB

- RFD at γ-ray detector arrays
 - > GALILEO
 - > AGATA
 - > PARIS
- RFD a good solution for measurements with radioactive bea
 - \checkmark high efficiency
 - ✓ projectiles do not irradiate the setup and can be transported to a FC distant from the experimental area.
 - ✓ detectors are not sensitive to any kind of radioactivity

RFD upgrade

- replacement of scintillators by ultra fast diamond detectors
- ✓ dedicated geometry (efficiency optimization)

New research prospects with **Br-Y** RIB

²¹⁸Ra: heart-shape nucleus:

quadrupole deformation + octupole phonon wave Frauendorf PRC77(2008)

CN= ²²⁴Th σ_{resid}(^{219,220}Th)~ 10mb σ_{fiss}~ 250mb (90%) i< 1pnA

B(E1,E2,

¹³⁰Te(⁹³Kr,5*n*)²¹⁸Ra Increased stability against fission CN= ²²³Ra σ_{resid}~ 200mb σ_{fiss} ~ 150mb (40%)

