Investigation of critical point symmetries in neutron rich nuclei

D. Tonev, G. de Angelis, P. Petkov, N. Goutev, M.S. Yavahchova, A. Dewald, I. Deloncle, D. Bazzacco, S. Brant, E. Farnea, A. Gadea, C. He, S. Lenzi, S. Lunardi, R. Menegazzo, B. Melon, D. Mengoni, A. Nannini, D. R.
Napoli, H. Penttila, A Pipidis, F. Recchia, E. Sahin, C.A. Ur, J.Valiente Dobon, and Q. Zhong
Institute for Nuclear Physics and Nuclear Energy, BAS, Bulgaria INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy INFN and Dipartamento di Fisica, Universita di Padova, Italy IKP, Cologne University, Germany
INFN and Dipartimento di Fisica, Universita di Firenze, Italy Department of Physics, University of Zagreb, Zagreb, Croatia University of Jyvaskyla, Finland, Department o Nuclear Physics, CIAE, Beijing, P.R. China

Critical Point Symmetries

\star Approximate potential at phase transition with infinite square well

* Solve Bohr Hamiltonian with square well potential

\star Result is analytic solution in terms of zeros of special Bessel functions
\star Predictions for energies and electromagnetic transition probabilities

F. Iachello, Phys. Rev. Lett. 85, 3580 (2000); 87, 052502 (2001).

Summary of Structural Benchmarks

Spherical Vibrator

Axially Symmetric Deformed Rotor

$$
\underbrace{E_{\text {rot }}=\frac{\hbar^{2}}{2 \mathbf{2}} J(J+\mathbf{1})}_{\substack{\beta \\ \gamma=0}} R_{4 / 2}=3.33
$$

Deformed γ - soft structure

Potential completely flat in γ degree of freedom

$$
\begin{gathered}
E(\tau)=\frac{\hbar^{2}}{2 \mathrm{I}} \tau(\tau+3) \\
R_{4 / 2}=2.5
\end{gathered}
$$

Evolution of Nuclear Shapes

Extended Casten triangle

R.F. Casten, Nature Physics vol. 2, Issue 12 (2006) 811.
$A \sim 150, N=90$
${ }^{148} \mathrm{Ce},{ }^{150} \mathrm{Nd},{ }^{152} \mathrm{Sm},{ }^{154} \mathrm{Gd},{ }^{156} \mathrm{Dy} \quad{ }^{176} \mathrm{Os},{ }^{178} \mathrm{Os}$
A~165
${ }^{162} \mathrm{Yb},{ }^{166} \mathrm{Hf}$

A~120
${ }^{122} \mathrm{Ba},{ }^{126} \mathrm{Ba}$
A~80
${ }^{76} \mathrm{Sr},{ }^{78} \mathrm{Sr},{ }^{80} \mathrm{Zr},{ }^{89} \mathrm{Sr}$
A~100
${ }^{98} \mathrm{Sr}$

A~130
${ }^{128} \mathrm{Ce},{ }^{130} \mathrm{Ce},{ }^{134} \mathrm{Sm}$
A~105
${ }^{104} \mathrm{Mo},{ }^{106} \mathrm{Mo}$

Why ${ }^{98}$ Sr?

Liciunc oxp oricunculs=
 We urounse to nonulate exciled states in 98Sr Itroughi Coullonlibeycilation

The efficiency for GALILEO array will be about 6% and that of TRACE detector about 50%. Assuming a ${ }^{98} \mathrm{Sr}$ beam intensity of about $1.2 \times 10^{4} \mathrm{pps}$ accelerated by SPES radioactive nuclear beam facility we will need about 7 days.

- Beam: ${ }^{98} \mathrm{Sr}$ at an energy of 350 MeV
- Target: $100 \mathrm{mg} / \mathrm{cm}^{2}$ gold for RDDS
- Position sensitive silicon detector TRACE will be utilized to detect the scattered beam particles.
" GALILEO gamma ray spectrometer
- Plunger device will used for determination of picosecond lifetimes.

