Isospin Mixing at Finite Temperature

OUTLINE

- Heavy Ions Fusion-Evaporation Reactions

- GDR and Isospin Mixing
- Garfield + Hector experimental setup
- Experimental technique
- Isospin mixing in ⁸⁰Zr at T~2 MeV
- Conclusions and Perspectives

Dipole gamma emission

Dipole gamma emission

Pre-equilibrium Emission

- if $E_{\text{beam}} > 10\text{-}15 \text{ MeV/u} \Rightarrow \text{part. emission}$
- if $N/Z_{target} \neq N/Z_{projectile}$ Dynamical Dipole γ -rays emission
 - Symmetry term in EOS
 - N-N cross section inside the nucleus

GDR statistical γ -decay

- Nuclear Shape and Deformation at high Temperature and Spin
- Information on the structure of the inital and final state
 - if $T_z(CN)=0 \Rightarrow$ isospin mixing

Dipole gamma emission

Pre-equilibrium Emission

- if $E_{\text{beam}} > 10-15 \text{ MeV/u}$ part. emission
- if $N/Z_{target} \neq N/7$ alk of Λ . Dynamical Dipole γ -rays emission
 - Symmetry term in EOS
 - N-N cross section inside the nucleus

GDR statistical γ -decay

- Nuclear Shape and Deformation at high Temperature and Spin
- Information on the structure of the inital and final state
 - if $T_z(CN)=0 \Rightarrow$ isospin mixing

Isospin mixing induced by Coulomb interaction

Physics Case

- The Ground State of most of nuclei has Isospin T=Tz=(N-Z)/2
- Isospin symmetry in nuclei is broken by Coulomb interaction Vc which mixes states with T and T+1 (T+2,...)
- Isospin is an <u>almost good quantum number in nuclear reactions</u> which involve low-lying states.
- Isospin is NOT conserved at moderate excitation energy.
- Isospin is restored as an <u>almost good quantum number in fusion-evaporation reactions (E*>20 MeV)</u>:
 - a given reaction will form a CN with a wavefunction which conserve isospin
 - the CN might decay before isospin mixes
 - the degree of isospin mixing of CN state is an interplay between the compound nucleus Decay Width Γ and the Coulomb Spreading Width Γ^{\downarrow}

$$\alpha^2 \simeq \frac{\Gamma^\downarrow}{\Gamma}, \qquad \qquad \alpha^2_< = \frac{\Gamma^\downarrow_/\Gamma_>}$$

• the Coulomb Spreading Width Γ^{\downarrow} defines the timescale for the isospin mixing

H.L. Harney et al rev. Mod. Phys. 58(1986)607 - M.N. Harakeh et al. Phys. Lett. B 176(1986)297 - A.Behr et al. Phys. Rev. Lett. 70(1993)3201

Isospin mixing dependence on Z, A and Temperature

Sagawa et al., PLB 444, 1 (1998)

How we measure Isospin mixing

• We form a T \neq 0 Compound Nucleus with a heavy ions fusion reaction

 $^{37}\text{Cl} + ^{44}\text{Ca} \Rightarrow ^{81}\text{Rb}^* \qquad E^* = 83 \text{ MeV}$

• We form a T=0 Compound Nucleus with a heavy ions fusion reaction

 ${}^{40}Ca + {}^{40}Ca \Longrightarrow {}^{80}Zr^* \qquad E^* = 83 \text{ MeV}$

- We measure the γ -ray yield from the decay of the GDR built on the CN
 - T = 0 to T = 0 E1 Transition are forbidden
 - T = 0 to T = 1 E1 transition are allowed but there are much less T=1 state available to be populated by GDR decay in respect to T = 0 states

This results in a strong inhibition of the GDR γ -decay from the hot ⁸⁰Zr compound

Isospin mixing, as mix T=0 states with T=1 states ,will increase the GDR γ yield

Two extreme scenarios

No Mixing $\Rightarrow a_{<}^{2} = 0 \Rightarrow$ strong inhibition of the gamma decay channel Full Mixing $\Rightarrow a_{<}^{2} = 1/2 \Rightarrow$ No inhibition of the gamma decay channel

How we measure Isospin mixing

• We form a T=0 Compound Nucleus with a heavy ions fusion reaction

GARFIELD-HECTOR setup at Laboratori Nazionali di Legnaro

Statistical Model Analysis: response function of the apparatus

projectile	target	CN	E _{beam} (MeV)	E*(MeV)	Iz
³⁷ Cl	⁴⁴ Ca	⁸¹ Rb	153	83	7/2
⁴⁰ Ca	⁴⁰ Ca	⁸⁰ Zr	200	83	0

The initial spin population of measured ⁸⁰Zr and ⁸¹Rb Compound Nuclei takes into account Phoswich detectors geometry

High spin and, consequently, lower E_{int} is favoured by phoswich kinematic selection

Garfield : isotopic identification and energy spectra

Statistical Model Analysis: CASCADE code

Isospin dependence has been introduced in CASCADE simulation of Statistical decay by M.N.Harakeh (PLB 176, 297 (1986)), K.Snover and M.Kicinska-Habior (PRL 70, 3201 (1993))

1) CN spin population with $| \langle \rangle = | J, I, \pi \rangle$, $I = I_z = \frac{N-Z}{2}$ 2) Mixing of population with *I* and I+1according to mixing parameter α^2 3) p, n, α , γ decay according to FOR **NSTEP** trasmission coefficients (I dependent) 4) new phase space population and mixing of *I* and I+1

5) residual nuclei (with $E^* \approx 0$)

Statistical Model Analysis

The set of parameters giving the best fit has been determined with χ^2 test:

1) Fit of GDR parameters on ⁸¹Rb γ -ray spectrum using $\Gamma \downarrow = 0$

 \rightarrow S=90%, E_{GDR}=16.2 MeV, Γ =10.6 MeV

Statistical Model Analysis

2) Using GDR parameters of 1), fit of Γ^{\downarrow} on ⁸⁰Zr spectrum

 \rightarrow $\Gamma^{\downarrow}=0.010$ 0.003 MeV corresponding to $\alpha_{<}^{2}=5.0$ 1.5%

Statistical Model Analysis of ⁸¹Rb γ decay (GDR not hindered)

3) Back to 1) with ⁸¹Rb and $\Gamma^{\downarrow}=12$ keV, to check the stability of the fit

Statistical Model Analysis without mixing

4) Best fit of GDR parameters on ⁸⁰Zr without isospin mixing

S=90%, E_{GDR}=16.2 MeV, **Γ=9.7 MeV**

5) Fit ⁸¹Rb with Γ =9.7 MeV

Only with isospin mixing both γ -decay spectra can be reproduced simultaneously

Isospin MIXING

• HOT GDR

CN(E*,J, I=0)

E

I = 1

$$\frac{||GS\rangle = |I, I_z\rangle}{80 \text{Zr}} \xrightarrow{|I|=0} \frac{||I|}{||I|}$$

$$\Gamma_{\text{IAS}} = 9.9 \text{ keV} \text{ (in } {}^{80}\text{Se)}$$

Nuclear Physics A315 (1979) 157-162;

$\frac{I=0}{I=0} = 10 \pm 3 \text{ keV}$

There is one mechanism responsible for the mixing. At high excitation energy the scenario is affected by 'external' influence', namely the lifetime of the CN.

Similar scenario as in

- Motional Narrowing
- GDR intrinsic width

Conclusions:

GDR has been used as a probe/tool to study Isospin Mixing

- Nuclear system: N=Z ⁸⁰Zr at T~2 MeV
- Coulomb Spreading width has been measured 10 ± 3 keV (Preliminary) - It is the same value as Γ_{IAS} measured at T=0 in ${}^{80}Se$
- A value of $\alpha_{<}^2 = 5.0$ 1.5 % has been exctracted from data (Preliminary)
- The measured value is consistent with theory and previous data

Future:

- Extract from data the E*=0 values of α^2
- New experimental data

High energy γ-rays from hot compound nuclei are an important tool to understand reaction dinamics, nuclear structure and symmetries

GARFIELD – HECTOR COLLABORATION:

A.Corsi¹, O.Wieland⁷, S.Barlini², V.L.Kravchuk³, G.Baiocco⁵, L.Bardelli², G.Benzoni⁷, M.Bini², N.Blasi⁷, A.Bracco¹, S. Brambilla⁷, M.Bruno⁵, F.Camera¹, S. Carboni², G.Casini², M.Ciemala⁴, M.Cinausero³, M.Chiari², F.C.L. Crespi¹, M.D'Agostino⁵, M.Degerlier³, <u>A.Giaz¹</u>,
F.Gramegna³, M.Kmiecik⁴, S.Leoni¹, A.Maj⁴, T.Marchi³, K.Mazurek⁴, W. Meczynski⁴, B.Million⁷, D.Montanari⁶, L.Morelli⁵, A.Nannini², R.Nicolini¹, G.Pasquali², S.Piantelli², A.Ordine⁸, G.Poggi², V.Rizzi³, V.Vandone¹, G.Vannini⁵

 Dipartimento di Fisica, Università di Milano and INFN Sezione di Milano, Italy. 2 Dipartimento di Fisica, Università di Firenze and INFN Sezione di Firenze, Italy. 3 INFN Laboratori Nazionali di Legnaro, Italy. 4 The Henryk Niewodniczański Institute of Nuclear Physics, Krakow, Poland. 5 Dipartimento di Fisica, Università di Bologna and INFN Sezione di Bologna, Italy. 6 Dipartimento di Fisica, Università di Padova and INFN Sezionedi Padova, Italy. 7 INFN Sezione di Milano, Italy. 8 INFN Sezione di Napoli, Italy. **Isospin mixing dependence on Z and Temperature**

 $\succ \alpha_{<}^{2}$ at Z=40 obtained from Statistical Model analysis confirms the trend at finite temperature (1.6 < T < 3 MeV)

Extrapolation of $\alpha_{<}^2$ calculated at T=0 up to T ≈ 2 MeV will be done according to formula in Sagawa *et al.*, PLB 444, 1 (1998)

Phoswich: residues and light particles identification in Cl+Ca

GB (a.u.)

Statistical Model Analysis

The set of parameters giving the best fit has been determined with χ^2 test:

1) Fit of GDR parameters on ⁸¹Rb γ -ray spectrum using $\Gamma \downarrow = 0$

 \rightarrow S=90%, E_{GDR}=16.2 MeV, Γ =10.6 MeV

2) Using GDR parameters of 1), fit of Γ^{\downarrow} on ⁸⁰Zr spectrum

 $\rightarrow \Gamma^{\downarrow}=0.012$ 0.04 MeV corresponding to $\alpha_{<}^{2}=5$ 1.5%

Calibration of CsI:

- -calibration of the LO via elastic scattering measurements at different E_{beam}
- -Z,A identification via fastslow correlation
- -E=*f*(LO,A,Z) according to Birks-like formula
- -subtraction of ΔE_{loss} in microstrip gas chamber

HECTOR

8 large volume ($\approx 3 \text{ dm}^3$) BaF₂ scintillators, time resolution $\approx 1 \text{ ns}$

Configuration inside GARFIELD scattering chamber (seen by incoming beam)