Nuclear Alpha-Particle Condensation

⁴⁰Ca+¹²C, 25 AMeV with CHIMERA

First experimental evidence of alpha-particle condensation for the Hoyle state

Ad. R. Raduta, B.Borderie, N. Le Neindre, E. Geraci, P. Napolitani, M.F. Rivet et al.

Ad. R. Raduta,^{1,2} B. Borderie,¹ E. Geraci,^{3,4,5} N. Le Neindre,^{1,6} P. Napolitani,¹ M. F. Rivet,¹ R. Alba,⁷ F. Amorini,⁷ G. Cardella,³ M. Chatterjee,⁸ E. De Filippo,³ D. Guinet,⁹ P. Lautesse,⁹ E. La Guidara,^{3,10} G. Lanzalone,^{7,11} G. Lanzano,^{3,*} I. Lombardo,^{7,4} O. Lopez,⁶ C. Maiolino,⁷ A. Pagano,³ S. Pirrone,³ G. Politi,^{3,4} F. Porto,^{7,4} F. Rizzo,^{7,4} P. Russotto,^{7,4} and J.P. Wieleczko¹² ¹Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud 11, Orsay, France ²National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania ³INFN, Sezione di Catania, Italy ⁴Dipartimento di Fisica e Astronomia, Università di Catania, Italy ⁵INFN. Sezione di Bologna and Dipartimento di Fisica, Università di Bologna, Italy ⁶LPC, CNRS/IN2P3, Ensicaen, Université de Caen, Caen, France ⁷INFN, Laboratori Nazionali del Sud, Italy ⁸Saha Institute of Nuclear Physics, Kolkata, India ⁹Institut de Physique Nucléaire, CNRS/IN2P3, Université Claude Bernard Lyon 1, Villeurbanne, France ¹⁰CSFNSM, Catania, Italy ¹¹Università di Enna "Kore", Enna, Italy ¹²GANIL, (DSM-CEA/CNRS/IN2P3), Caen, France

Outline of the talk

- Condensation in the nuclear physics context
- Experimental strategy and experiment
- Results
- Conclusions and perspectives

Nuclear clusters in the medium symmetric nuclear matter

G. Ropke et al., PRL 80 (1998) 3177

BEC LEA nov. 2010

Bernard Borderie

Condensation only at very low density $\rho < \rho_0/5$

Finite nuclei: ⁸Be, ¹²C ...

Constant density contours

Quantum Monte Carlo calculation for $^{8}Be(0^{+})$

Density: $\rho_0/3$

R. B. Wiringa et al., PRC 62 (2000) 014001

BEC LEA nov. 2010

¹²C*:Hoyle state

Role in the creation of ¹²C in stellar nucleosynthesis

Does a dilute
$$3\alpha \ ^{12}C^*$$
 state exist ? Similar to $^8Be+\alpha$?

Predictions: F. Hoyle et al., Phys. Rev. 92 (1953) 1095

Observation: C. W. Cook, W. A. Fowler et al., Phys. Rev. 107 (1957) 508 BEC LEA nov. 2010 Bernard Borderie

Shell model calculations

The most modern no-core shell model calculations predict the O_2 ⁺ at around 17 MeV excitation energy

for different model space sizes.

A. Tohsaki et al., PRL 87 (2001) 192501

BEC LEA nov. 2010

A. Tohsaki et al., PRL 87 (2001) 192501

BEC LEA nov. 2010

Alpha cluster wave function

Quantization of energy surface E (B, b) :

- Force : A. Tohsaki 1990 no adjustable parameters ! Without adjustable parameters:
- ¹²C: $E(0_{2}^{+}) E_{thr} = theory +0.50 \text{ MeV}$ exp. +0.38 MeV ¹⁶O: $E(0_{5}^{+}) - E_{thr} = theory -0.70 \text{ MeV}$ exp. -0.44 MeV $E(0_{6}^{+}) - E_{thr} = theory + 2.0 \text{ MeV}$ exp. + 0.66 MeV Rms radii calculated => $\rho_{0}/3$ Y. Fusaki et al., PRL 101 (2008) 082502

¹²C*:Hoyle state

- momentum distribution of the a particles for ${\rm O_1^+}$ and ${\rm O_2^+}$ states
- Reflecting the dilute structure of the Hoyle state => strong concentration of the momentum distribution in the k<1fm⁻¹
- Id dilute neutral atomic condensate states at very low temperature.
 - T. Yamada and P. Schuck EPJA 26 (2005) 185

Fig. 7. Momentum distribution of the α particle, (a) $\rho(k)$ and (b) $k^2 \times \rho(k)$, for the 0^+_1 (solid line) and 0^+_2 (dotted line) states.

Hoyle state: almost ideal a-particle condensate (70%)

Boson occupancy :

 $\alpha\text{-particle}$ density matrix :

residual correlations among a particles (mostly of the Pauli type)

Diagonalization:

 $^{12}C: O_2^+ = 70\%$ S-wave occupancy

T. Yamada and P. Schuck, EPJA 26 (2005) 185

BEC LEA nov. 2010

From ¹²C to n alphas

BEC LEA nov. 2010

Alpha particle mean field potential

Calculations done with approximation for na >4

Estimate: maximum of 8-10 as together in a condensate

BEC LEA nov. 2010

Experimental strategy

We search for a simultaneous emission of low (*C:126 keV, *O:165 keV) and equal energy alphas close to the Na threshold

intermediate energy HI reactions to take
advantage of fragment velocity boosts
associated with high granularity of detection
→ ⁴⁰Ca + ¹²C at 25 MeV per nucleon

and use of powerful multi-particle correlation methods to select excited states and their deexcitations

CHIMERA multidetector 1192 Si-CsI(TI) telescopes

26 rings covering 95 % of 4π from 1° to 176° very high granularity at forward angles

thickness: Si ≈ 300 µm CsI(Tl) from 12 to 3 cm

CHIMERA experiment ¹²C*, ¹⁶O*: mostly secondary products of quasi-projectile deexcitations

Identification E-TOF: A up to 20 E-∆E: Z and A up to 20 Fast-Slow CsI(Tl): Z≤5 and associated A

Energy calibration

- Z=1: proton beams in Si, CsI(Tl)
- Z=2: dedicated energy calibration of CsI(Tl) from TOF
- Z>2: E from Si information (C and O beams)

CsI(TI) resolution: 1.5 - 2 %

CHIMERA experiment ¹²C*, ¹⁶O*: mostly secondary products of quasi-projectile deexcitations

- Beam intensity: 10⁷ ions/s
- Angular range used: 0=1-62
 (rings 1-9 + small part of the sphere)
 - => 816 telescopes

Particle identification

Selection: reaction products with velocities > v_{proj}/2

BEC LEA nov. 2010

Multi-particle correlation function R. Charity et al., PRC 52 (1995) 3126

to identify and select nuclei/excited states

N alphas => determination of the alpha emitter reference frame => $E_{tot} = \sum E_{k}^{i}$

Correlation function: 1+R(E_{tot})=Ycorr(E_{tot})/Yuncorr(E_{tot})

Quality of energy calibration ? Two-alpha correlation function

⁸Be E_{tot}=92 keV (Γ=5.6 eV)

Exp: 78 keV

Angle under which particle is emitted (finite granularity) Dir. of velocity vector: geometrical center of the module random angle in the geometrical extension of the module

BEC LEA nov. 2010

Quality of energy calibration ? d-alpha correlations

⁶Li $E_{ex} = E_{tot} - Q$ $E_{ex} = 2.186$ MeV

Exp: 2.21 MeV

three-alpha correlation function

$$M_a = 3$$

$${}^{12}C \rightarrow a + a + a$$
$$\rightarrow a + {}^{8}Be \rightarrow a + a + a$$

Yuncorr(Ek): Alphas in different events 2 alphas in the same event

3a threshold 7.275 MeV

 3^{-} 9.641 MeV (34keV) 2_{2}^{+} 9.7 MeV (?) 0_{3}^{+} 10.3 MeV (3MeV)

> PRL soumis arXiv:1004.3234

BEC LEA nov. 2010

three-alpha correlation function

12C*-Hoyle state: energy in the lab of the alpha particles

Intra-event correlation function G. Tabacaru et al., EPJA 18 (2003) 103

- For a given alpha multiplicity, 2 intra-event parameters:
- average kinetic energy <Ea>
- root mean square $\sigma_{E\alpha}$

Correlation function: $1+R(\sigma_{Ea}, \langle Ea \rangle)=Ycorr(\sigma_{Ea}, \langle Ea \rangle)/Yuncorr(\sigma_{Ea}, \langle Ea \rangle)$

12C*-Hoyle state: alpha cond. state

12C*-Hoyle state: alpha cond. state « Dalitz plots »

Angle (new Dalitz)

three-alpha correlation function

$$M_a = 3$$

$${}^{12}C \rightarrow a + a + a$$
$$\rightarrow a + {}^{8}Be \rightarrow a + a + a$$

Yuncorr(Ek): Alphas in different events 2 alphas in the same event Qualitative info (detection dependent)

3a threshold 7.275 MeV

 $E_{ex} = E_{tot} - Q$

¹²C second O⁺
 7.654 MeV
 Γ=8.5 eV
 E_{tot}=379 keV

$$3^{-}$$
 9.641 MeV (34keV)
 2_{2}^{+} 9.7 MeV (?)
 0_{3}^{+} 10.3 MeV (3MeV)

¹²C*-broad peak at E_{ex} = 9.62 MeV

Intra-ev. corr. funct. Energy Dalitz plot Ang

Angle Dalitz plot

SOTANCP2 2010 arXiv:1009.1267

BEC LEA nov. 2010

four-alpha correlation function

four-alpha correlation function

R. J. Charity et al., PRC 52 (1995) 3126

Conclusion and perspectives

Heavy ion collisions used to produce ¹²C and ¹⁶O excited states theoretically predicted as alpha-particle condensed states.

39 events of low energy RMS corresponding to the direct decay of the Hoyle state have been identified as a signature of condensation in nuclei.

A most interesting information for astrophysics would be the branching ratio between the two decay processes: A simulation is in progress to extract this ratio with an error bar. At present upper limit for direct 3-alpha decay: 4% (M. Freer et al., PRC 49 (1994) R1751). From phase space considerations => 5×10^{-4}

Only 4 events (equal energy alphas) identified in the deexcitation region of the 6th 0⁺ state of ¹⁶O. Granularity of CHIMERA good enough for such a study. A new experiment with higher statistics must be performed to better study the ¹⁶O case. Simulations are needed to say if condensate states for heavier nuclei can be studied with CHIMERA.

12C*-Hoyle state: BEC state

No selection (2.5 million ev.)

BEC LEA nov. 2010

12C*-Hoyle state: BEC state

denominator: a+a+a

BEC LEA nov. 2010

000

four-alpha correlation function

INDRA data, Ar+Ni 32 AMeV granularity too bad for 4a

BEC LEA nov. 2010

3a and 3p correlation functions: numerator and denominator

BEC LEA nov. 2010

5

dernara doraerie

9-E	48	49-96	640-687	5185-5232	100.	2730.	7.5
10	32	32	688-719	-	40.	3038.	11.2
11	32	32	720-751	-	40.	3846.	11.2
12	32	32	752-783	-	40.	4654.	11.2
13	32	32	784-815	-	40.	5462.	11.2
14	32	32	816-847	-	40.	6270.	11.2
15	32	32	848-879	-	40.	7078.	11.2
16	32	32	880-911	-	40.	7886.	11.2
17	32	32	912-943	-	40.	8694.	11.2

0.90	6-E	48	49-96	352-399	4897-4944	160.	14.5-16.	7.5
1.34	7-I	48	1-48	400-447	4945-4992	140.	1618.	7.5
1.49	7-E	48	49-96	448-495	4993-5040	140.	1820.	7.5
1.64	8-I	48	1-48	496-543	5041-5088	120.	2022.	-7.5
1.78	8-E	48	49-96	544-591	5089-5136	120.	2224.	7.5
2.95	9-I	48	1-48	592-639	5137 - 5184	100.	2427.	7.5
3.27	9-E	48	49-96	640-687	5185 - 5232	100.	2730.	7.5

	4-E	40	41-80	184-223	4729-4708	210.	8.5-10.	9.	0.
	5-I	40	1-40	224-263	4769-4808	180.	1011.5	9.	0.
	5-E	40	41-80	264-303	4809-4848	180.	11.5-13.	9.	0.
	6-I	48	1-48	304-351	4849-4896	160.	1314.5	7.5	0.

Ring	Module	Module DP2	Telescope	PID Si	Dist. (cm)	Θ	$\Delta \Phi$	$\Delta\Omega$
1-I	16	1-16	0-15	4545-4560	350.	1.0-1.6	22.5	0.13
1-E	16	17-32	16-31	4561-4576	350.	1.6 - 2.6	22.5	0.21
2-I	24	1-24	32-55	4577-4600	300.	2.6 - 3.6	15.	0.25
2-E	24	25-48	56-79	4601-4624	300.	3.6 - 4.6	15.	0.33
3-I	32	1-32	80-111	4625-4656	250.	4.6 - 5.8	11.25	0.37
3-E	32	33-64	112-143	4657-4688	250.	5.8-7.	11.25	0.46
4-I	40	1-40	144-183	4689-4728	210.	78.5	9.	0.55
4-E	40	41-80	184-223	4729-4768	210.	8.5-10.	9.	0.66
5-I	40	1-40	224-263	4769-4808	180.	1011.5	9.	0.77
5-E	40	41-80	264-303	4809-4848	180.	11.5-13.	9.	0.87
6-I	48	1-48	304-351	4849-4896	160.	1314.5	7.5	0.81

CHIMERA	geometry
---------	----------