Nuclear Alpha-Particle Condensation

$^{40}\text{Ca}+^{12}\text{C}$, 25 AMeV with CHIMERA

First experimental evidence of alpha-particle condensation for the Hoyle state
Ad. R. Raduta, B. Borderie, N. Le Neindre, E. Geraci, P. Napolitani, M.F. Rivet et al.
Outline of the talk

- Condensation in the nuclear physics context
- Experimental strategy and experiment
- Results
- Conclusions and perspectives
Nuclear clusters in the medium symmetric nuclear matter

G. Ropke et al., PRL 80 (1998) 3177

Condensation only at very low density $\rho < \rho_0/5$
Finite nuclei: ^8Be, ^{12}C ...

Quantum Monte Carlo calculation for ^8Be (0^+)

Density: $\rho_0/3$

R. B. Wiringa et al., PRC 62 (2000) 014001
$^{12}\text{C}^*$: Hoyle state

Role in the creation of ^{12}C in stellar nucleosynthesis

Does a dilute 3α $^{12}\text{C}^*$ state exist? Similar to $^8\text{Be} + \alpha$?

Predictions: F. Hoyle et al., Phys. Rev. 92 (1953) 1095

Hoyle state

7.27 MeV

3 α threshold
Shell model calculations

The most modern no-core shell model calculations predict the O_2^+ at around 17 MeV excitation energy.

2 α's in 1S orbit, 1 in 2S
2 α's in 1S orbit, 1 in 1D
3 α's in 1S orbit

A. Tohsaki et al., PRL 87 (2001) 192501
Alpha cluster wave function and formalism of ideal Bose condensate

Theoretical Description

Ideal Bose condensate: \(|0\rangle = b_0^\dagger b_0^\dagger \ldots b_n^\dagger |vac\rangle \)

\(\Phi_{ac} \): \(|\Phi_{ac}\rangle = C_a C_b \ldots C_n |vac\rangle \)

\(\alpha \)-particle condensate: \(|\Phi_{ac}\rangle = C_1 \ldots C_{\alpha} |vac\rangle \)

Variational ansatz for \(\Phi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4) : \Phi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4) = e^{\frac{-\beta^2R^2}{2}} \phi(\vec{r}_1 - \vec{r}_2) \)

Center of mass: \(\vec{R} = \frac{1}{4} (\vec{r}_1 + \vec{r}_2 + \vec{r}_3 + \vec{r}_4) \)

Intrinsic \(\alpha \)-wave function:

\[\phi(\vec{r}_1 - \vec{r}_2) = e^{-\frac{1}{8\rho}(r_1^2 + r_2^2 + (r_3 - r_2)^2 + r_4^2 + \ldots)} \]

Two variational parameters: \(B, b \)

Two limits: \(B = b \) | \(\Phi_{ac} \rangle = \text{Slater determinant} \)

\(B \gg b \) | \(\Phi_{ac} \rangle = \text{gas of independent } \alpha \text{-particles} \)

Two dimensional surface: \(E(B, b) = \frac{\langle \Phi_{ac} | H | \Phi_{ac} \rangle}{\langle \Phi_{ac} | \Phi_{ac} \rangle} \)

A. Tohsaki et al., PRL 87 (2001) 192501

BEC LEA nov. 2010

Bernard Borderie
Alpha cluster wave function

Quantization of energy surface $E(B,b)$:

Force: A. Tohsaki 1990 no adjustable parameters!

Without adjustable parameters:

$^{12}\text{C: } E(0^+_2) - E_{\text{thr}} = \text{theory } +0.50 \text{ MeV}$

exp. $+0.38 \text{ MeV}$

$^{16}\text{O: } E(0^+_5) - E_{\text{thr}} = \text{theory } -0.70 \text{ MeV}$

exp. -0.44 MeV

$E(0^+_6) - E_{\text{thr}} = \text{theory } +2.0 \text{ MeV}$

exp. $+0.66 \text{ MeV}$

Rms radii calculated $\Rightarrow \rho_0/3$

Y. Fusaki et al., PRL 101 (2008) 082502
$^{12}\text{C}^*$: Hoyle state

Momentum distribution of the α particles for 0_1^+ and 0_2^+ states

Reflecting the dilute structure of the Hoyle state \Rightarrow strong concentration of the momentum distribution in the $k<1\text{fm}^{-1}$.

Id dilute neutral atomic condensate states at very low temperature.

T. Yamada and P. Schuck EPJA 26 (2005) 185
Hoyle state: almost ideal α-particle condensate (70%)

residual correlations among α particles (mostly of the Pauli type)

Boson occupancy:

α-particle density matrix:

$$\rho_{\alpha}(\vec{R}, \vec{R}')$$ \(\vec{R} \): c.m. of α

Diagonalization:

^{12}C: O_2^+ 70% S-wave occupancy

T. Yamada and P. Schuck, EPJA 26 (2005) 185
From ^{12}C to n alphas

Bosons

Back to nuclei

Many α's condensate

^{12}C

0^+_1 7.65 MeV
Alpha particle mean field potential

Calculations done with approximation for $n_\alpha > 4$

Estimate: maximum of 8-10 as together in a condensate

Experimental strategy

We search for a simultaneous emission of low
\((^{12}\text{C}:126\text{ keV}, \ ^{16}\text{O}:165\text{ keV})\) and equal energy alphas close to the \(\text{Na}\) threshold

intermediate energy HI reactions to take advantage of fragment velocity boosts associated with high granularity of detection

\[{^{40}\text{Ca} + ^{12}\text{C}} \text{ at } 25\text{ MeV per nucleon} \]

and use of powerful multi-particle correlation methods to select excited states and their deexcitations
CHIMERA multidetector
1192 Si-CsI(Tl) telescopes

26 rings covering 95% of 4π
from 1° to 176°
very high granularity at forward angles

thickness:
Si \approx 300 µm
CsI(Tl) from 12 to 3 cm
CHIMERA experiment

$^{12}\text{C}^\ast$, $^{16}\text{O}^\ast$: mostly secondary products of quasi-projectile deexcitations

Identification
- E-TOF: A up to 20
- E-ΔE: Z and A up to 20
- Fast-Slow CsI(Tl): Z≤5 and associated A

Energy calibration
- Z=1: proton beams in Si, CsI(Tl)
- Z=2: dedicated energy calibration of CsI(Tl) from TOF
- Z>2: E from Si information (C and O beams)

CsI(Tl) resolution: 1.5 – 2 %
CHIMERA experiment

12C*, 16O*: mostly secondary products of quasi-projectile deexcitations

- Beam intensity: 10^7 ions/s
- Angular range used: $\Theta=1-62$
 (rings 1-9 + small part of the sphere)

=> 816 telescopes
Particle identification
Selection: reaction products with velocities $> \frac{v_{\text{proj}}}{2}$
Multi-particle correlation function
R. Charity et al., PRC 52 (1995) 3126

to identify and select nuclei/excited states

\[N \text{ alphas} \Rightarrow \text{determination of the alpha} \]
\[\text{emitter reference frame} \Rightarrow E_{tot} = \sum E_k \]

Correlation function:
\[1 + R(E_{tot}) = \frac{Y_{corr}(E_{tot})}{Y_{uncorr}(E_{tot})} \]
Quality of energy calibration?

Two-alpha correlation function

^8Be

$E_{\text{tot}}=92$ keV ($\Gamma=5.6$ eV)

Exp: 78 keV

Angle under which particle is emitted (finite granularity)

Dir. of velocity vector:
geometrical center of the module
random angle in the geometrical extension of the module
Quality of energy calibration?

d-alpha correlations

^6Li

$E_{ex} = E_{tot} - Q$

$E_{ex} = 2.186 \text{ MeV}$

Exp: 2.21 MeV
three-alpha correlation function

\[M_\alpha = 3 \]

\[^{12}\text{C} \rightarrow \alpha + \alpha + \alpha \]

\[\rightarrow \alpha + ^8\text{Be} \rightarrow \alpha + \alpha + \alpha \]

Yuncorr(E_k):

Alphas in different events
2 alphas in the same event

3\alpha\text{ threshold}
7.275 MeV

\[E_{ex} = E_{tot} - Q \]

\[^{12}\text{C} \text{ second } 0^+ \]
7.654 MeV
\[\Gamma = 8.5 \text{ eV} \]
\[E_{tot} = 379 \text{ keV} \]

3\text{-} 9.641 \text{ MeV (34keV)}
2_2^+ \ 9.7 \text{ MeV (74keV)}
0_3^+ \ 10.3 \text{ MeV (3MeV)}

PRL soumis
arXiv:1004.3234

BEC LEA nov. 2010

Bernard Borderie
three-alpha correlation function
12C*-Hoyle state: energy in the lab of the alpha particles
Intra-event correlation function

G. Tabacaru et al., EPJA 18 (2003) 103

For a given alpha multiplicity, 2 intra-event parameters:

average kinetic energy \(\langle E_\alpha \rangle \)
root mean square \(\sigma_{E_\alpha} \)

Correlation function:

\[
1 + R(\sigma_{E_\alpha}, \langle E_\alpha \rangle) = Y_{corr}(\sigma_{E_\alpha}, \langle E_\alpha \rangle)/Y_{uncorr}(\sigma_{E_\alpha}, \langle E_\alpha \rangle)
\]
$^{12}\text{C}^*$-Hoyle state: alpha cond. state

$M\alpha=3$

$7.37 \leq E_{ex} \leq 7.97\text{ MeV}$

39 events

$\langle E\alpha \rangle \approx 110\text{ keV}$

$\sigma \leq 25\text{ keV}$

85 (241) events

$\langle E\alpha \rangle \approx 130\text{ keV}$

$\sigma \approx 85\text{ keV}$

PRL soumis, arXiv:1004.3234
12C*-Hoyle state: alpha cond. state
« Dalitz plots »

energy

Angle (new Dalitz)

PRL soumis, arXiv:1004.3234

BEC LEA nov. 2010

Bernard Borderie
three-alpha correlation function

$M_\alpha = 3$

$^{12}\text{C} \rightarrow \alpha + \alpha + \alpha$

$\rightarrow \alpha + ^8\text{Be} \rightarrow \alpha + \alpha + \alpha$

$E_{\text{ex}} = E_{\text{tot}} - Q$

^{12}C second 0^+

7.654 MeV

$\Gamma = 8.5 \text{ eV}$

$E_{\text{tot}} = 379 \text{ keV}$

Yuncorr(E_k):

Alphas in different events

2 alphas in the same event

Qualitative info (detection dependent)

^2He

9.641 MeV (34 keV)

^2_2Be

9.7 MeV (?)

^3_0He

10.3 MeV (3 MeV)
$^{12}\text{C}^*$-broad peak at $E_{\text{ex}} = 9.62$ MeV

Intra-ev. corr. funct. Energy Dalitz plot Angle Dalitz plot

$^{12}\text{C}^* \rightarrow \alpha + ^8\text{Be} \rightarrow \alpha + \alpha + \alpha$

SOTANCP2 2010 arXiv:1009.1267
four-alpha correlation function

\[M_{\alpha} \geq 4 \]

\(^{16}\text{O}\) sixth \(0^+\)
15.097 MeV
\(\Gamma = 166\) keV
\(E_{\text{tot}} = 660\) keV

4\(\alpha\) threshold
14.437 MeV

\(^{8}\text{Be} + ^{8}\text{Be}\) threshold 14.619 MeV

\(^{12}\text{C} +\alpha\) threshold 14.811 MeV

\(Y_{\text{uncorr}}(E_k)\):
Alphas in different events
+ 2 alphas in the same event
+ 3 alphas in the same event
+ 2 alphas in 2 different events
four-alpha correlation function

$^{20}\text{Ne}+^{120}\text{Sn}$ 40 MeV/nucleon

INDRA

CHIMERA

R. J. Charity et al.,
PRC 52 (1995) 3126

$E_{\text{ex}} = E_{\text{tot}} + 14.44\text{ MeV}$
Conclusion and perspectives

Heavy ion collisions used to produce 12C and 16O excited states theoretically predicted as alpha-particle condensed states.

39 events of low energy RMS corresponding to the direct decay of the Hoyle state have been identified as a signature of condensation in nuclei.

A most interesting information for astrophysics would be the branching ratio between the two decay processes: A simulation is in progress to extract this ratio with an error bar. At present upper limit for direct 3-alpha decay: 4% (M. Freer et al., PRC 49 (1994) R1751). From phase space considerations $\Rightarrow 5 \times 10^{-4}$

Only 4 events (equal energy alphas) identified in the deexcitation region of the 6th 0^+ state of 16O. Granularity of CHIMERA good enough for such a study. A new experiment with higher statistics must be performed to better study the 16O case. Simulations are needed to say if condensate states for heavier nuclei can be studied with CHIMERA.
12C*-Hoyle state: BEC state

No selection (2.5 million ev.)
12C*-Hoyle state: BEC state

denominator: a+a+a
four-alpha correlation function
INDRA data, Ar+Ni 32 AMeV
granularity too bad for 4α

\begin{align*}
\text{Ar+Ni, 32 MeV/nucleon} \\
M_s = 3 \\
two \alpha \text{ from the same event}
\end{align*}

\begin{align*}
\text{Ar+Ni, 32 MeV/nucleon} \\
M_s = 4 \\
two \alpha \text{ from the same event}
\end{align*}
3s and 3p correlation functions: numerator and denominator
<table>
<thead>
<tr>
<th>Ring</th>
<th>Module</th>
<th>Module DP2</th>
<th>Telescope</th>
<th>PID Si</th>
<th>Dist. (cm)</th>
<th>Θ</th>
<th>ΔΦ</th>
<th>ΔΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-E</td>
<td>16</td>
<td>1-16</td>
<td>0-15</td>
<td>4545-5560</td>
<td>350.</td>
<td>1.6-1.6</td>
<td>22.5</td>
<td>0.13</td>
</tr>
<tr>
<td>1-E</td>
<td>16</td>
<td>17-32</td>
<td>16-31</td>
<td>4561-5576</td>
<td>350.</td>
<td>1.6-2.6</td>
<td>22.5</td>
<td>0.21</td>
</tr>
<tr>
<td>2-I</td>
<td>21</td>
<td>1-24</td>
<td>32-55</td>
<td>4577-6000</td>
<td>300.</td>
<td>2.6-3.6</td>
<td>15.</td>
<td>0.25</td>
</tr>
<tr>
<td>2-E</td>
<td>21</td>
<td>25-48</td>
<td>56-79</td>
<td>4601-6624</td>
<td>300.</td>
<td>3.6-4.6</td>
<td>15.</td>
<td>0.33</td>
</tr>
<tr>
<td>3-I</td>
<td>32</td>
<td>1-32</td>
<td>18-111</td>
<td>4625-6550</td>
<td>250.</td>
<td>4.6-5.8</td>
<td>11.25</td>
<td>0.37</td>
</tr>
<tr>
<td>3-E</td>
<td>32</td>
<td>33-61</td>
<td>112-143</td>
<td>4657-6088</td>
<td>250.</td>
<td>5.5-7.7</td>
<td>11.25</td>
<td>0.46</td>
</tr>
<tr>
<td>4-I</td>
<td>30</td>
<td>1-40</td>
<td>144-183</td>
<td>4689-7728</td>
<td>210.</td>
<td>7.8-9.5</td>
<td>9.</td>
<td>0.55</td>
</tr>
<tr>
<td>4-E</td>
<td>40</td>
<td>41-80</td>
<td>184-223</td>
<td>4728-5768</td>
<td>210.</td>
<td>8.5-10.</td>
<td>9.</td>
<td>0.66</td>
</tr>
<tr>
<td>5-I</td>
<td>40</td>
<td>1-40</td>
<td>224-263</td>
<td>4769-5808</td>
<td>180.</td>
<td>10.11.5</td>
<td>9.</td>
<td>0.77</td>
</tr>
<tr>
<td>5-E</td>
<td>40</td>
<td>41-80</td>
<td>264-303</td>
<td>4809-5184</td>
<td>180.</td>
<td>11.5-13.</td>
<td>9.</td>
<td>0.87</td>
</tr>
<tr>
<td>6-I</td>
<td>48</td>
<td>1-48</td>
<td>301-351</td>
<td>4849-5896</td>
<td>160.</td>
<td>13.14.5</td>
<td>7.5</td>
<td>0.81</td>
</tr>
</tbody>
</table>

0.90	6-E	48	49-96	352-369	4897-4944	160.	14.5-16.	7.5
1.34	7-I	48	1-48	460-447	4945-5002	140.	16.18.	7.5
1.49	7-E	48	49-96	448-595	4993-5040	140.	18.20.	7.5
1.64	8-I	48	1-48	496-543	5041-5088	120.	20.22.	7.5
1.78	8-E	48	49-96	544-591	5089-5136	120.	22.24.	7.5
2.95	9-I	48	1-48	592-639	5137-5184	160.	21.27.	7.5
3.27	9-E	48	49-96	640-687	5185-5232	160.	27.30.	7.5

10	32	32	688-719	-	40.	30.-38.	11.2
11	32	32	720-751	-	40.	38.-46.	11.2
12	32	32	752-783	-	40.	46.-54.	11.2
13	32	32	784-815	-	40.	54.-62.	11.2
14	32	32	816-847	-	40.	62.-70.	11.2
15	32	32	848-879	-	40.	70.-78.	11.2
16	32	32	880-911	-	40.	78.-86.	11.2
17	32	32	912-943	-	40.	86.-94.	11.2