

New Perspectives for the Gamma-Ray Spectroscopy at LNL: the GALILEO Project

C.A. Ur INFN Sezione di Padova (for the GALILEO collaboration)

GAmma SPectrometer – GASP

Operational since 1992

High spin gamma-ray spectroscopy following fusion-evaporation reactions

> $d_{target-det.} = 27 \text{ cm}$ > $\Omega_{Ge} \sim 10\%$ > $\varepsilon_{ph} \sim 3\% @ 1332.5 \text{ keV}$ BGO inner ball

- ➢ 80 BGO elements
- sum energy&multiplicity

VOLUME 74, NUMBER 6

<u>GASP</u> 1995

N = 40 Neutron Subshell Closure in the ⁶⁸Ni Nucleus

R. Broda, B. Fornal, W. Królas, and T. Pawłat H. Niewodniczański Institute of Nuclear Physics, PL-31-342 Kraków, Poland

D. Bazzacco, S. Lunardi, C. Rossi-Alvarez, and R. Menegazzo Dipartimento di Fisica dell'Universitá di Padova and INFN, 1-35131 Padova, Italy

> G. de Angelis, P. Bednarczyk, J. Rico, and D. De Acuña INFN Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy

P. J. Daly, R. H. Mayer, and M. Sferrazza Chemistry Department, Purdue University, West Lafayette, Indiana 47907

> H. Grawe, K. H. Maier, and R. Schubart Hahn–Meitner–Institut Berlin, D-14109 Berlin, Germany (Received 28 June 1994)

FIG. 3. Systematics of selected states in even Ni isotopes. The ⁶⁸Ni results are prominently displayed and compared with the S3V shell model calculations (see text).

The increase of the ⁶⁸Ni 2⁺ excitation energy, by more than 600 KeV compared with ⁶⁶Ni, indicates a significant subshell closure at N=40

GASP – Difficulties

obsolete analogue electronic modules

- > no spare parts
- > difficult to repair
- old Ge detectors
 - > expensive repair (ORTEC)
 - repair do not restore the original detectors' performance
 - some hope from PSA!
- small space for external ancillary
- holding structure not flexible

EUROBALL Cluster Detectors

- 15 x 7-cluster detectors (GSI RISING array)
 - Encapsulated n-type HPGe detector
 - FWHM < 2.4 keV @ 1332.5 keV</p>
 - ♦ E_{int} ~60% @ 1332.5 keV
- common cryostat
- Independent HV/LV/FE for each capsule

RISING Configuration

7-capsule packaging not efficient

- solid angle coverage
- gamma-ray energy reconstruction (add-back)

GEANT4 Simulation

Possible 3–clusters Configuration

New configuration with triple clusters 40 detectors@24cm - Ω=50%

Pros:

uniform coverage of the solid angle (ang.distr., DSAM)
more efficient anti-Compton
less impact on the total efficiency when detectors are removed from the array
natural add-back (ener. res.)

Cons:

anti-Compton shields not available
new cryostat - high cost

GALILEO Configuration

Mixed configuration with GASP dets. and 3–clusters 40 10

Symmetric configuration of the array
GASP anti–Compton shields available

Under study!

Prolonged availability of all the detectors

GALILEO – R&D Tasks

- Development of the cryostat (prototype financed 2010)
 - end-cap (low-cost)
 - dewar
 - cabling
 - thermal conduction
- Design of a new anti-Compton shield (prototype financed 2011)
 - recover crystals from EUROBALL
- Design of holding structure (partly financed 2011)
 - more space for ancillary detectors
 - flexible configuration
 - G.GALILEO infrastructure
- New electronics (prototypes financed 2011)
 - front end
 - digitizers
 - readout
- LN₂ filling system
 - recover distribution lines from GASP
 - new control NI CompactRIO architecture

Cryostat R&D

- Optimize the cost
 - end-cap in carbon fibre produced at LNL
 - dewar with standard available materials
 - parts build at Padova and LNL workshops
- Optimize cryostat
 - easy repair (pumping, zeolite regeneration)
 - reduce LN2 consumption through better insulation
 - mechanical and thermal study (COMSOL Multiphysics)
- Carbon fiber
 - more resistant than Al
 - more transparent to low-energy gamma rays
 - Production time few hours

GASP detector end-cap

Vacuum tightness good Mass analysis (water) – <u>fiber storage (-18°C)</u>

Triple Cluster Cryostat – Design

Electronics R&D

Take advantage of the work done for AGATA
 single core preamplifier (extended energy range)
 GTS

- AGAVA
- New developments
 - digitizers first step towards a 'digital preamp.'
 - readout (optical fiber)
 - pre-processing (PCI-express cards)
- Opened questions
 - readout of the anti-Compton elements

Pre-processing Electronics R&D

Holding Structure R&D

Eliminate bending of the beam at 90°
 rotate the structure by 90° and build a new beam line
 more space to add ancillary at 0°

Flexible

- \blacklozenge configuration without AC close to the target ϵ_{ph} ~15%
- \bullet configuration with AC at ~ 26 cm from target ϵ_{ph} ~6%
- removable front part (RFD, neutron)
- multiplicity filter ?

Time Schedule – Main Milestones

- Request to EOC 1st July 2010
- Cryostat design completed end of 2010
- Working triple cluster prototype March-April 2011
- Digitizer and readout prototypes end of 2011
- Design of the structure end of 2011
- Production first half 2012
- Complete the LN₂ filling system first half 2012

Request to EOC

- 15 letters of intent research groups from 19 institutes
- Structure of N~Z nuclei at high spin
- Isospin Symmetry
- Neutron-rich nuclei
- Exotic decay of high-spin states
- Nuclear structure close to ¹⁰⁰Sn
- Cluster and highly deformed states in sd-shell nuclei
- Giant resonances and warm rotations
- Symmetries and shape-phase transitions in nuclei
- Shape coexistence in neutron-deficient nuclei

Extend the physics case with LoI' for SPES

Coupling to Complementary Detectors

Light charged particle detectors **EUCLIDES** TRACE ELUSIA Neutron detectors In-Ring ■N-Wall NEDA Binary reaction products detection DANTE Recoil detectors **RFD** High-energy gamma-rays detectors

Study of weak reaction channels & SPES beams

High efficiency

High resolving power

HECTOR

Collaborators

- 🖉 C. Fanin
- D. Rosso
- M. Bellato
- D. Bortolato
- R. Isocrate
- A. Pullia
- S. Riboldi
- E. Farnea
- D. Bazzacco

Summary

the development of a new gamma-ray array is proposed

- detectors from GASP
- capsules of the EUROBALL cluster detectors
- important R&D is going on
 - triple clusters
 - carbon fiber end-cap
 - dewar

coupling with state-of-the-art ancillary detectors

- charged particles
- neutrons
- fragments