Diagnostic Devices for Radioactive Ion Beams at INFN - LNS

L. Cosentino

INFN - Laboratori Nazionali del Sud

SPES2010 International Workshop

Legnaro, 15-17 November, 2010

Accelerators at LNS

LNS layout : the Excyt facility

EXCYT diagnostics

Very low energy/low intensity beams

The ordinary electromagnetic techniques approach their **intrinsic limitations**, mainly due to:

- electronic noise
- triboelectric noise
- signal contamination due to secondary electron emission

Low S/N ratio

Possible solutions

- increase the sensitivity
 - reduce noise by better design and shielding (can be complex and expensive)
- increase the signal
 - a is to use particle detectors

Available techniques

- Semiconductors
- Scintillators
- Secondary emission
 (with physical amplification, e.g.: MCP)
- Gas detectors
- Diamond
- Others: Cherenkov, etc.

in use at LNS

Low energy beam Imaging with CsI

beam imaging: CsI(TI) scintillating screen and high sensitivity CCD video camera

NIM B 211 (2003) 443

Diagnostics for Low Energy RIBs

LEBI: Low Energy Beam Imager / Identifier

three different heights

- Imaging of Stable (pilot) beams
- Imaging of radioactive beams
- Beam rate measurement
- Decay curve reconstruction

LEBI	is	our	soluti	on	for
diagno	stics	of	low	en	ergy
radioa	ctive	,			

NIM A 479 (2002) 243 NIM A 622 (2010) 512

Diagnostics for Low Energy RIBs

Three working positions

stable beam imaging

L. Cosentino - SPES 2010 - 17/11/2010

beam axis

radioactive beam imaging

LEBI

Low Energy Beam Imager/Identifier

10 LEBI working along the EXCYT beam line

Diagnostics for accelerated RIBs

Low intensity diagnostics (sensitivity down the single particle, upgraded during 2010 for providing the long beam lines (Magnex and Chimera)

Same diagnostics for In-flight production of radioactive beams

G. Raciti et al, NIM B 266 (2008) 4632

Beam counting

for beam intensity below 10⁶pps

Plastic scintillator (BC408) optically coupled to a small PMT, working in pulse counting mode

1D beam X-Y profiles

This technique consists of scanning a beam with scintillating fibres, in order to produce the 1D intensity distribution

Light collection efficiency at one end: ≈3.5%

• Light yield is of the order of 10000 photons/MeV. For charged particles is lower (quenching).

•Plastic scintillating fibre: fast (3ns), not rad-hard, $L_{at} \approx 3.5m$, $\lambda \approx 435nm$

•Tb-glass scintillating fibre: slow (4ms), rad-hard, $L_{at} \approx 10$ cm, $\lambda \approx 550$ nm

•Ce-glass scintillating fibre: fast (40ns), not rad-hard, L_{at} ≈2cm, λ ≈400nm

FIBBS (Fibre Based Beam Sensor)

sliding protection screen ion beam scintillating fibres PMT

Fibres diameter: 300500 μmGlass fibres for intensity over 106 ppsPlastic fibres for lower intensity

Position sensitive silicon detector

position sensitive silicon telescope for RIB identification and profiling

- 2D beam profile monitor
- beam energy spectrum
- identification of the beam particles (∆E E)
- read-out from the back and the 4 corners
- charge division algorithm for position evaluation

reconstruction of the hole mask put in front of the detector for calibration

5cm x 5cm Si detector

Position Sensitive Silicon Detector

Silicon telescope

telescope for RIB identification

Ions Tagging with Time Of Flight

Multi-strip silicon detector for ions tagging

Time reference can be given by the RF or by a MCP

1D Beam profile monitor based on MCP for SPES

System developed in Legnaro LNL, based on a MCP placed directly on the beam line, with a position sensitive anode. Less than 10⁵pps/cm² measured profile sensitivity.

Tested successfully at LNS with a 50 keV ¹⁶O beam.

New diagnostics challenge: LNS in the DITANET european network

Dlagnostic Techniques for future particle Accelerators NETwork

antiproton beam imaging at FAIR? We need sensitivity below 1fA

Conclusions

•several different technologies tested/employed at LNS for RIBs

- •in general each specific problem needs a specific solution
- •scintillators are a tradeoff solution between robustness, ease-of-use, and cost
- •Csl(Tl), doped glass, and plastics (in some cases) offer good performance

Outlooks

R&D activity towards diagnostic devices for the SPES facility.

Diagnostics for accelerated RIBs

Plastic scintillators for beam intensity measurements

15 detection points

Position sensitive silicon detectors for real time beam imaging

Beam profile monitor (FIBBS) based on a pair of scintillating fibres scanning the beam

KGht

3 detection points

SPES beam: Sn-132

132SN B- DECAY (39.7 S)

Parent state: G.S. Half life: 39.7 S(5)

Beta ray:

Max.E(keV)	Avg.E(keV)	Intensity(rel)	Spin	0+
2596.9(-)	1056(19)	0.17(LT)		(3-,2-)
1760(40)	672(18)	99(4)		1+
811.7(-)	271(16)	0.87(6)		1+

Gamma	ray:	for	absolute	intensity	multiply	by	0.492(9)
-------	------	-----	----------	-----------	----------	----	--------	----

Energy(keV)	Intensity(rel)
85.58(8)	98(2)
91.7(2)	0.17(3)
93.9(2)	0.20(2)
134.7(2)	0.24(3)
162.8(2)	0.15(7)
246.87(5)	86(4)
340.53(5)	100
443.5(2)	0.46(4)
529.09(6)	4.3(4)
549.23(7)	4.7(4)
652.31(6)	5.5(4)
710.7	0.13
795.7(2)	0.63(4)
816	-
870.1	0.02
899.04(5)	91(5)
992.66(8)	75(4)
1078.3(1)	5.1(3)
1239.63(5)	19.8(10)
1739.10(25)	0.26(6)
1842.22(25)	1.5(1)

Projectile Selection: Tagging Procedure

Identification of ⁸Li by means of the decay curve

8LI B- DECAY

Parent state Half life:

Branch ratio:

Q(gs): 160

838

(6)

Beta ray:

Max.E(keV)	Avg.E(keV)	Intensity(rel)	Spin	2+
12963.7(-)	6243(15)	100 (AP)		2+

CS energy (FRIBs beams)

Tandem energy

real time

Gamma ray spectroscopy with two germanium detectors

Set-up for new beams

Nuclide	Half life	Possible contaminants (M/∆M)	Average energy of beta (keV)	Gamma peaks (keV)	Detectors to be used
⁸ Li	0.838 s	⁸ B (3800)	6243	No peaks	Plastic scintillator. Spectra reconstruction.
⁹ Li	0.178 s	⁹ C (2120)	A lot of beta's	No peaks	Plastic scintillator. Difficult for threshold estimation. Too short half life.
¹⁰ C	19.255 s	¹⁰ Be (3020), ¹⁰ B* (2560)	No beta's	718, 1021	CsI and germanium. Peaks recognition.
¹¹ C	20.39 min	¹¹ Be (1080), ¹¹ B* (5170)	385.6	No peaks	Plastic scintillator. Spectra reconstruction.
¹⁵ C	2.449 s	¹⁵ N* (1430), ¹⁵ O (1990)	4649, 2032	5297	Plastic scintillator and germanium
¹⁵ O	112.24 s	¹⁵ N* (5070), ¹⁵ C (1990)	735	No peaks	Plastic scintillator. Spectra reconstruction.
¹⁹ O	26.9 s	¹⁹ N (1410), ¹⁹ F* (3670)	2200 (4%), 2103 (45.4%), 1442 (54.4%)	A lot of peaks	Plastic scintillators and germanium. Difficult for threshold estimation.
²⁰ O	13.51 s	²⁰ N (1040), ²⁰ F (4890), ²⁰ Na (6110), ²⁰ Mg (1350)	1197	1056	Plastic scintillators (spectra reconstruction) and germanium.

Set-up for new beams

Nuclide	Half life	Possible contaminants (M/∆M)	Average energy of beta (keV)	Gamma peaks (keV)	Detectors to be used
¹⁷ F	64.49 s	¹⁷ N (2680)	740	No peaks	Plastic scintillator. Spectra reconstruction.
¹⁸ F	109.77 min	¹⁸ N (1370), ¹⁸ O* (10130)	250	No peaks	Plastic scintillator. Spectra reconstruction.
²⁰ F	11.16 s	²⁰ Na (2710), ²⁰ O (4880), ²⁰ Mg (1060)	2481	1633	Plastic scintillator and germanium
²⁵ AI	7.183 s	²⁵ Mg* (5440), ²⁵ Na (52700), ²⁵ F (1150), ²⁵ Si (1830)	1460		Plastic scintillator. Spectra reconstruction.
²⁹ AI	6.56 min	 ²⁹Mg (3570), ²⁹Na (1300), ²⁹Si* (7340), ²⁹P (21360), ²⁹S (1790) 	1023 (90%), 670 (3.8%), 490 (6.3%)	Several peaks with energy > 1200 keV	Plastic scintillators and germanium. Difficult for threshold estimation.
³³ CI	2.511 s	³³ S* (5500), ³³ P (5760), ³³ Si (60100), ³³ Ar (2640)	2096	No appreciable peaks	Plastic scintillator. Spectra reconstruction.

Set-up for new beams

Nuclide	Half life	Possible contaminants (M/∆M)	Average energy of beta (keV)	Gamma peaks (keV)	Detectors to be used
³⁴ CI	1.526 s (spin 0 ⁺), 32.00 min (spin 3 ⁺)	 ³⁴S* (5760), ³⁴P (270490), ³⁴Si (7060), ³⁴Ar (5220) 	- 0 ⁺ : 2052 - 3 ⁺ : 1099 (28.4%), 555 (25.6%)	 – 0⁺: no peaks – 3⁺: a lot of peaks 	Easy (Plastic scintillator. Spectra reconstruction) if the 0 ⁺ is favourite
³⁸ CI	37.24 min	 ³⁸S (12040), ³⁸P (2310), ³⁸Ar* (7190), ³⁸K (35500), ³⁸Ca (4570) 	2244 (57.6%), 1181 (10.5%), 420 (31.9%)	1642 (31.9%), 2167 (42.4%)	Plastic scintillators and germanium. Difficult for threshold estimation.
³⁹ Cl	55.6 min	 ³⁹S (5470), ³⁹P (2120), ³⁹Ar (10550), ³⁹K* (9060), ³⁹Ca (14380) 	A lot of beta's	A lot of gamma's.	Plastic scintillators and germanium. Difficult for threshold estimation.
⁴⁰CI	1.35 min	 ⁴⁰S (7910), ⁴⁰P (1940), ⁴⁰Ar* (4980), ⁴⁰K (6230), ⁴⁰Ca* (5110), ⁴⁰Sc (5300) 	A lot of beta's	A lot of gamma's.	Plastic scintillators and germanium. Difficult for threshold estimation.

* Stable isotope