Introduction	Ancillary detector	Plan&Fundings	Conclusion	Appendix

Status of the TRACE array

D. Mengoni

University of the West of Scotland, Paisley - U.K. INFN - Sezione di Padova, Padova - Italy

> SPES workshop, LNL - Italy Nov 15th÷17th, 2010

Outline				
Introduction	Ancillary detector	Plan&Fundings	Conclusion	Appendix

Introduction ●ooo	Ancillary detector	Plan&Fundings oo	Conclusion oo	Appendix
Physics cas	se			

The exotic matter: the neutron- and proton-rich nuclei

Nuclear Physics

INFN

Introduction ●ooo	Ancillary detector	Plan&Fundings oo	Conclusion oo	Appendix
Physics cas	se			

The exotic matter: the neutron- and proton-rich nuclei

Nuclear Physics

INFN

Introduction	Ancillary detector	Plan&Fundings	Conclusion	Appendix
0000				
Introduction	n			

Introduction Direct reaction (Transfer,Coulex, ...) as spectroscopic tool

- Positions of levels (Q-value)
- Spin and parities (Angular distributions)
- Spectroscopic factor (Cross sections)

Transfer with RIBs

- Inverse kinematics
- Low intensity beams
- Detection: beam-like ejectile (spectrometer), target-like ejectile (Si det.)

Constraints

- Energy (angular resolution)
- Efficiency
- Background
- target, beam tracker

Introduction 0000	Ancillary detector	Plan&Fundings oo	Conclusion	Appendix
Introduction	า			

Doppler Correction

FE as spectroscopic tool

FE w	ith Intense beam
-	Direct kinematics
	High intensity beams
-	Detection: light charged particles
_	
Cons	traints
Cons	traints Angular resolution
Cons	traints Angular resolution Particel discrim. Efficiency

Introduction 000●	Ancillary detector	Plan&Fundings oo	Conclusion 00	Appendix
TRACE De TRacking Array f	esign for light Charged pa	article Ejectiles		
TRACE4	,6,8	module	pad layout	a change

ΔE-E telescope array: 150μm and 1.5mm;
high segmentation and high-count rate;
digital PSA, ~1E4 ch, 1÷2° 4x4 mm² at 10 cm;

TRACE design: barrel, end-caps.

Introduction 0000 Ancillary detector

Plan&Fundings

Conclusion

Appendix

Deep Inelastic: ¹⁷O(340MeV)+²⁰⁸Pb Spokesperson:R.Nicolini&D.Mengoni - GQR in ^{207,208}Pb,⁹⁰Zr

Energy resolution (chilled) 0.4 %

GQR (pigmy and fine structure) AD+TRACE+HELENA

Introduction 0000	Ancillary detector ⊙●⊙	Plan&Fundings oo	Conclusion	Appendix
TRACE ME	CHANICS			

cooling, angular range

Introduction 0000	Ancillary detector	Plan&Fundings oo	Conclusion 00	Appendix
TRACE ON	I-LINE DAQ			

modular electronics

Introduction	Ancillary detector	Plan&Fundings ○●	Conclusion 00	Appendix
Timescale				

Introduction 0000	Ancillary detector	Plan&Fundings oo	Conclusion ●○	Appendix
Perspective	S			

GALILEO

AGATA

Synergies

GASPARD (SPIRAL2-GANIL)

INFN

HYDE (FAIR-GSI)

Si array for DR and FE reactions;

Coupling with gamma spectrometer (AD);

GQR ²⁰⁸Pb, ⁹⁰Zr: TRACE+AD+HELENA;

final remarks

- Versatile set-up
- PSA on light ions and particles.
- integrated FEE
- TRACE Demo ready for SPES

Introduction 0000	Ancillary detector	Plan&Fundings oo	Conclusion oo	Appendix
Simulation:	framework			

Event generator, radiation interaction, filter (PSA, tracking), data collection (matrices and spectra)

INFN

Introduction 0000	Ancillary detector	Plan&Fundings oo	Conclusion oo	Appendix
Simulation: other configuration	framework			

- Full-energy eff.:probability to detect the total energy of any emitted photon individually
- Peak-to-total ratio: the ratio of full energy efficiency to the total interaction efficiency.

Introduction 0000	Ancillary detector	Plan&Fundings oo	Conclusion 00	Appendix
Multiple hit	probability and	d efficiency		

Multiple hit event: more than one particle hits simultaneously the same segment

Probability P(M,k) to detect k particles over M emitted

Assumed isotropic fusion-evaporation (M=6), 1000 pads with 8x8 mm² dim.

 $P(M, 0) + P(M, 1) \simeq 99\%$

Efficiency: broadening of the measured fold

$$\frac{P(M,k)}{P(M,k-1)} \Longrightarrow \varepsilon_{\alpha} = 40\%, \ \varepsilon_{\rho} = 50\%$$

for ³²S(125 MeV) +⁴⁰ Ca, $\gamma_{2^+ \to 0^+}$ ⁶⁴Ge(2 α), $\gamma_{2^+ \to 0^+}$ ⁷⁰Se(2 p)

Introduction	Ancillary detector	Plan&Fundings oo	Conclusion 00	Appendix
Doppler of TRACE8	correction			

Doppler broadening

- uncertainty in the photon emission angle
- uncertainty in the recoil energy
- intrinsic detector resolution

Anoillony	aomnarican			
Introduction	Ancillary detector	Plan&Fundings	Conclusion	Appendix

A			
ABOIL	ORV	-	oricon

TRACEx, EUCLIDES						
TRACE4 TRACE6 TRACE8 EUCLIDES						
Telesc	40	52	48	40		
Crys shap (E)	3	5	4	3		
Channels(E Δ E)	2856÷183E3	2435÷156E3	2304÷148E3	110		
Rate (kHz)	1÷80	1÷80	1÷80	200		
Chan selec	ΕΔΕ	ΕΔΕ	ΕΔΕ	ΕΔΕ		
Abs.ph.eff. (%)	26.6	26.84	27.82	26.0		
P/T (%)	58.49	59.57	59.26	58.46		
FWHM (keV)	-	-	2.5÷5.5	7÷8		
Solid angle (%)	90	<90	<90	\sim 80(exp)		
Eff (%)	55,42(sim)	52,38(sim)	53,40(sim)	50,40(exp)		
Mass (E Δ E, g)	705.5	601.6	569	107.4		
Vol (E Δ E, cm ³)	302.8	258.2	244.3	46.1		

0000	000	00	00	
				, ppondix
Introduction	Ancillary detector	Plan&Fundings	Conclusion	Appendix

Telescope specifications

- Detector: Silicon.
- Geometry & dimensions: solid angle coverage ≈ 90%; counting rate: 20 kHz; module dimensions ≃ 40 x 80 mm²; ΔE: Si-pad det. ≃ 150 µm thick, pad 4x4 mm²; E: Si-pad det. 1.5 mm thick, pad 4x4 mm².
- **A**ngular resolution: $1 \div 2^{\circ} 4x4 \text{ mm}^2$ at 10 cm.
- **Energy resolution:** <50 keV for 5.5 MeV α -particles.
- Wide energy range: 200 keV \div 15 MeV for p, 60 MeV for α -particles.
- Pulse shape analysis

Neighbour	alactrodas			
Introduction 0000	Ancillary detector	Plan&Fundings ০০	Conclusion	Appendix

Introduction	Ancillary detector	Plan&Fundings 00	Conclusion 00	Appendix
TRACE ¹⁷ O(350 Me\	first in-beam e	xperiment		
	2v120ch (high density o	(25°) and res (2)	(12.5°) and range	
	RACE+HELENA	TRAC	E telescope	

Introduction 0000	Ancillary detector	Plan&Fundings	Conclusion	Appendix
FEE&DAQ Electronics coupli	ng			

Introduction	Ancillary detector	Plan&Fundings	Conclusion 00	Appendix
Cooling s	system			

Introduction	Ancillary detector	Plan&Fundings oo	Conclusion	Appendix
Results Mass&Energy re	esolution			

Isotopic separation: O,N,C, etc Si Energy resolution ~0.45%

