LoI SPES

Spectroscopy studies around ⁷⁸Ni and beyond N=50 via transfer and Coulomb excitation reactions

J. J. Valiente Dobón (INFN-LNL, Padova, Italy) A. Gadea (IFIC, Valencia, Spain) E. Clement (GANIL, Caen, France) R. Orlandi (CSIC, Madrid, Spain)

Overview

- Study of nuclei in the region of ⁷⁸Ni
 - Along Z=28
 - Along N=50
 - Beyond N=50
- Physics cases for SPES
- Experimental apparatus
- Summary/Remarks

Ductu naturae

Magic numbers and their evolution as a direct consequence of the character of the nuclear force.

8

The "spin-orbit" magic numbers

Tensor interaction

Systematic variation of effective single-particle energies due to the tensor interaction

FIG. 4 (color). Proton (neutron) ESPE as a function of N (Z). Lines in (a)–(c) show the change of ESPE's calculated from the $\pi + \rho$ tensor force. Points represent the corresponding experimental data. (a) Proton ESPE's in Ca isotopes relative to $1d_{3/2}$. Points are from [13]. (b) Proton ESPE's in Ni isotopes; calculations only. See [19] for related experimental data. (c) Neutron ESPE's in N = 51 isotones relative to $2d_{5/2}$; points are from [21]. (d) Proton ESPE's in Sb isotopes; points are from [18]. Lines include a common shift of ESPE as well as the tensor effect (see the text).

 $V_T = (τ_1 τ_2) ([σ_1 σ_2]^{(2)} Y^{(2)}(Ω)) Z(r)$

T. Otsuka et al. PRL 95, 232502 (2005)

Indication of three body forces NNN

NNN in the Ca region

Microscopic calculations with well-established two-nucleon NN, do not reproduce N=28.

However NN and NN+3N forces predict the N=28 shell gap, but with quantitative differences.

The changes due to 3N forces are amplified in neutron-rich nuclei and will play a crucial role for matter at the extremes

T. Otsuka et al., PRL105, 032501 (2010) J.D. Holt et al., arXiv:1009.5984v1 (2010)

Evolution along Z=28 - 78Ni

The rigidity of the gap in ⁷⁸Ni is also an important issue in astrophysics because it is a waiting point in the r-process.

FIG. 1. Evolution of proton effective single-particle energies between ⁶⁸Ni and ⁷⁸Ni.

K. Sieja et al., PRC81, 061303 (2010)

Cu isotopes, Z=29

S. Franchoo et al., PRL 81, 3100(1998), I. Stefanescu *et al.*, PRL 100, 112502 (2008), K. Flanagan PRL, 103, 142501 (2009), J. M. Daugas PRC 81, 034304 (2010)

Along the N=50

Highly precision mass measurements

FIG. 4. Evolution of the N = 50 shell gap and comparison to theoretical models.

Two neutron shell gap energies

⁸⁰Zn Coulex З SMI $(\Theta_{\pi}, \Theta_{\nu}) = ($ E(2⁺1) [MeV] SMII (e_,e_) = This work - Ge B(E2)↓ [W.u.] Zn 30 🕁 Ni 20 10 0 30 40 50 **Neutron Number**

FIG. 2. $E(2_1^+)$ and $B(E2) \downarrow$ systematics for Ni (Z = 28), Zn (Z = 30), and Ge (Z = 32) isotopes. $B(E2) \downarrow$ values were taken from Refs. [6,7,9,10,18,30]. The dashed and dotted lines correspond to SM calculations for Zn isotopes.

J. Hakala et al., PRL101, 052502 (2008)

J. Van de Walle et al., PRL99, 142501 (2007)

The N=50 isotones

E. Sahin and G. De Angelis PLB (to be published) Y.H. Zhang PRC70, 024301 (2004)

Shell Model calcuations: 2p-2h excitations across the N=50 shell to $2d_{5/2}$ - $1g_{7/2}$ - $3s_{1/2}$ (Lisetsky) for **4.7 MeV** of the shell gap value \rightarrow No reduction of the shell gap

Beyond N=50 - Deformation

- Coulex: ^{78,80,82}Ge E. Padilla-Rodal et al., PRL94, 122501 (2005)
- Relativistic Coulex + knockout: ⁸²Ge and ⁸⁴Se A. Gade et al., PRC81, 064326 (2010)
- (d,p): ⁸³Ge and ⁸⁵Se: J.S. Thomas et al., PRC76, 044302 (2007)

Physics cases considered

 Coulomb excitation neutron-rich ^{86,88}Se and 84 Ge – Evolution of deformation quasi-SU(3).

•Coulomb excitation ^{73,75,77}Cu, population of collective states - Infer deformation on the Ni isotopes.

•(d,p) ^{81,82}Ga, ^{79,80}Zn – single particle orbital around N=50 $g_{9/2}$, $d_{5/2}$, $s_{1/2}$, $d_{3/2}$ and $g_{7/2}$. Gap stability

•(t, α) to selectively populate single proton states in odd-A ^{73,75,77,79}Cu isotopes- p_{3/2}, f_{5/2} and $f_{7/2}$. Proton removal from the GS of Zn.

⁸⁰Zn(d.p) @ 5.5 MeV/u 0.01 50 100 150 CoM angle ⁷⁸Zn(t,a)⁷⁷Cu @ 10.0 MeV/u 1f_{5/2} -- 1f_{7/2} oCross Section (mb) 2p_{3/2} 20 40 60 80 100 CoM angle

Cross Section (mb)

Detection systems

Charged particle/heavy ion detectors

Summary

- Study of the low-lying properties of isotopes near by ⁷⁸Ni and beyond N=50 with the SPES beams.
- Shell evolution in the region Tensor interaction, rigidity of the gaps when going towards ⁷⁸Ni
- Changes due to 3N forces are amplified in neutron-rich nuclei and will play a crucial role for matter at the extremes.
- Use of Coulomb excitation, (d,p) and (t,α) reactions to study the region
- Sensitive detection systems to be used like: AGATA, GALILEO, TRACE, DANTE
- There is no a universal technique to measure the physical properties along an isotopic chain
- Concerns: beam purity > 20%, intensity10³-10⁴, energy 10MeV/u