Structure of Sb nuclei around ¹³²Sn as a testing ground for realistic shell model interactions

Bartłomiej Szpak Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

B. Fornal, B. Szpak, N. Cieplicka, W. Królas, K.H. Maier, M. Matejska-Minda

Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland

J. Dudek

IPHC, Département de Recherches Subatomiques IN2P3-CNRS and Université de Strasbourg, F-67037 Strasbourg, France

S. Lunardi, D. Bazzacco, E. Farnea, A. Gottardo, S. Lenzi, R. Menegazzo, D. Mengoni, C. Michelagnoli, F. Recchia, C.A. Ur

Department of Physics, University of Padova and INFN, Padova, Italy

G. de Angelis, D.R. Napoli, E. Sahin, J. Valiente-Dobon,

INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

G. de France, E. Clement

GANIL, Caen, France

D. Mengoni, J.F. Smith, R. Chapman, A. Andreyev, K. Spohr

University of the West of Scotland, Paisley, UK

We would like to propose a gamma spectroscopic studies of low-lying structures in ¹²⁷⁻¹³⁴Sb, by employing incomplete fusion reactions induced by the radioactive beams of ¹²⁶⁻¹³³Sn on a ⁷Li target.

The nuclei will be populated in a

process.

	129Sb	130Sb	131Sb	132Sb	133Sb	134Sb
	4.40 H 8-: 100.00%	6-: 100.00%	25.05 M 8-: 100.00%	2.79 M 8-: 100.00%	2.5 M 8-: 100.00%	6-: 100.00%
				• • • • • • • • • • • • • • • • • • • •		
	128Sn 59.07 M	1298n 2.23 M	1308n 3.72 M	131Sn 56.0 S	132Sn 39.7 S	133Sn 1.45 S
I will discuss:	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.08%

- 1. Physical motivation
- 2. Current experimental information
- 3. 7 Li(A Sn, α 2n) $^{A+1}$ Sb reaction
- 4. Advantages of the suggested method

The realistic shell model calculations had opened a "new chapter" in nuclear structure physics. **Parameter-free** calculations around doubly-magic nuclides become possible. **No adjustment** of interaction is necessary to obtain the **excellent agreement** with the experimental data.

The nuclides from the vicinity of ¹³²Sn and ²⁰⁸Pb provide the best data to test the experimental data against theoretical predictions. **However the experimental information is very sparse.**

L. Coraggio, A. Covello, A. Gargano, N. Itaco, PRC **80**, 021305(R) (2009)

Available experimental information

The situation results from the inaccessibility of the region in standard fusionevaporation or deep-inelastic reactions with stable projectiles and targets. What little is known comes mainly from beta-decay studies or spectroscopic investigations of fission products.

The nuclei of interest will be populated in a reaction:

⁷Li(^ASn,α2n)^{A+1}Sb

There is a significant probability of a ⁷Li beam nucleus breaking up, with a triton being captured while α particle is emitted. Reaction offer access to states at relatively high angular momentum.

Clark et. al. [Cla] investigated the population of nuclei formed in reactions involving ⁷Li beams on targets of ¹⁶⁰Gd and ¹⁸⁴W.

- cross-section for the (⁷Li,α2n) process at beam energies of a few MeV above Coulomb barrier is of order of **100 mb**
- exceeds by 1-2 orders of magnitude the predictions of a standard fusion-evaporation model
- can be explained by using the Wilczynski binary transfer model + standard evaporation model.

[Cla] R. M. Clark et. al. PRC **72**, 054605

Recently, excited states in 123,125 Sb with spins up to 23/2 have been studied following the 122,124 Sn(7 Li, α 2n) 123,125 Sb incomplete fusion reaction at beam energy of 35, 37 MeV.

D. S. Judson et. al. PRC 76, 054306

The (⁷Li, α 2n) incomplete fusion reactions have been used to populate high-spin states in ^{121,123}Sb [Wat] and in ¹⁷⁹Hf [Mul].

[Wat] H. Watanabe et. al. PRC **79**, 024306 [Mul] S. M. Mullins et. al. PRC **61**, 044315

Experimental setup

Details of an experiment

Beam energy: **500-600 MeV** Target thickness: **1 mg/cm²** We assume :

- **100 mb** for the (⁷Li,α2n) channel cross-section
- **50%** efficiency of AGATA array trigged by charged particle detector

This gives:

- Few thousands of gamma singles or double gamma coincidence events per second for ¹²⁷⁻¹³⁰Sn beam
- For the reaction induced by the ¹³¹Sn beam leading to ¹³²Sb recorded gamma-gamma events will be of the order of few hundreds per second
- For a ¹³³Sn beam we get one order of magnitude lower for the counting rate for ¹³⁴Sb.

Element	particles/s		
¹²⁷ Sn	8.16E+08		
¹²⁸ Sn	6.36E+08		
¹²⁹ Sn	3.50E+08		
¹³⁰ Sn	1.58E+08		
¹³¹ Sn	6.83E+07		
¹³² Sn	3.11E+07		
¹³³ Sn	2.76E+06		

• The very inverse kinematics guarantees that the product nuclei all travel downstream in a very small recoil cone, thus Doppler correction do not require recoil detection.

• Reaction channel of interest will be uniquely associated with the emission of an α particle.

• The same reactions in their ⁷Li(^ASn,pxn)^ATe channel will also populate with appreciable yield the Te nuclei with A=129-136. The emitted protons may be used as event tags.

Presented counting rate estimates give us confidence that detailed gamma-ray spectroscopic studies of the low lying structures in ¹²⁷⁻¹³²Sb will be possible at SPES. Study of more exotic species possible with SPIRAL2.