Coulomb Excitation measurements of Radioactive lons

Barbara Melon* *INFN Sez. Firenze and Universita` di Firenze INFN Sez. Napoli and Universita` di Napoli INFN Sez. Padova and Universita` di Padova

SPES2010 International Workshop, 15-17 Nov. 2010 Legnaro (PD)

Outline

• Short description of the apparatus we are setting up for Coulomb excitation measurements

Coulomb excitation measurements in the region N ≥82 Z ≥50

GOSIA calculation results for ¹³⁴Sn, ¹³⁶Te, ¹⁴⁶Ba and ^{140,142}Xe

ALL PRODUTAL FAMES - DE LAND CONTENTE DE LA PARTE

why both was a part of a part the star a straight

Coulex measurements with RIBs

Coulomb excitation measurements in inverse kinematics : projectile nuclei are scattered on a heavy target and detected at forward angles to provide a clean trigger for selecting gamma rays

What is needed:

- beam intensity $\geq 10^5$ p/s and energy ~ 4 5 MeV/A
- an array of gamma detectors, we assume $\epsilon_{\gamma} \sim 10\%$ @ 1 MeV (Galileo?)
- a detector for ions to determine the energy and the scattered angle of the projectile

Apparatus for particle detection

- a pie of 8 sectors of Si Strip detectors (2-nd stage of the RCo device already used coupled with Garfield)
- the reaction chamber housing the target and the Si Strip Detector
- dedicated electronics

The Annular Silicon Detector

8 sectors of Si strip detectors arranged in a pie-shaped array
The front surface (junction side) is segmented into 8 strips
The thickness of the Si detector is around 300µm
Dead layer 50nm

θ coverage when the detector is mounted at 5 cm distance from the target: 18 to 60 degrees

SPES 15-17.11.2010

Strip no.	Inner radius (mm)	Outer radius (mm)	θ _{min} (deg)	θ _{max} (deg)
1	76.7	85.0	56.9	59.5
2	68.1	76.4	53.7	56.7
3	59.5	67.9	50.0	53.6
4	50.9	59.3	45.5	49.9
5	42.4	50.7	40.3	45.4
6	33.8	42.1	34.1	40.1
7	25.2	33.6	26.7	33.9
8	16.6	25.0	18.4	26.6

Example of the kinematics

With the Si detector mounted at 5 cm distance from the target \rightarrow θ coverage: 18 to 60 degrees

The north east region of Z=50 and N=82

The study of exotic nuclei in the regions of shell closures is drawing much attention.

The advent of SPES neutron-rich radioactive beam facility opens the possibility for a wide range of experimental investigations of nuclei in the region around N=82 and Z=50 shell closures, whose properties are still poorly known.

D.C. Radford, Eur. Phys. J A 25, s01,383-387 (2005)

Coulex of ¹³⁴Sn

output of GOSIA code:

beam intensity: 5·10⁵ ion/sec beam energy: 570 MeV

 ϵ_{γ} : 8% @ 1 MeV θ coverage: 18 to 60 degrees

	Expt	Calc		
$\begin{array}{c} \frac{6^+}{4^+} & 0.26(\frac{4}{3}) \hline W.n. & 1073 \\ \frac{2^+}{4^+} & \frac{725}{1.4(3) \hline W.n. \\ 0^+ & 0 \end{array} \\ \hline \\ 1.4(3) \hline W.n. \\ 0^+ & 0 \end{array} \\ \hline \\ 134Sn \end{array}$ Reafford et al., Nucl. Phys. A 752 (200) Stergues et al. Phys. Rev C 65 (2002) \\ \end{array} $\begin{array}{c} 2^+ & 0.2 \hline W.n. 1016 \\ 0.6 \hline W.n. \\ 0^+ & 0 \end{array} \\ \hline \\ 0^+ & 0 \end{array} \\ \hline \\ 0^+ & 0 \end{array} \\ \hline \\ 0^+ & 0 \end{array}$				
¹³⁴ Sn	Energy [keV]	Y [mb·mg/cm²/sr]	counts/hour	
$2_1 \rightarrow 0_1$	726	35	16	
41 → 21	348	0.32	0.1	
$2_2 \rightarrow 2_1$	863	0.44	0.2	

Coulex of ¹³⁶Te

The B(E2; $2_1^+ \rightarrow 0_1^+$) transition strength in ¹³⁶Te reported in literature has caused some discussions in the past, as its value seemed to be lower than predicted by theory

<u>New question:</u> for the second 2⁺ state the predictions of different shell model approaches are in strong disagreement

GOSIA calculation:

beam intensity: 1.1·10⁷ ion/sec beam energy: 600 MeV

SPES 15-17 Nov. 2010

¹³⁶ Te	Energy [keV]	Y [mb·mg/cm²/sr]	counts/hour
$2_2 \rightarrow 0_1$	670	127	1164
4 ₁ → 2 ₁	423	7	64
$2_2 \rightarrow 2_1$	962	0.88	8

Coulex of ¹⁴⁶Ba:

phase transition phenomena and dynamical symmetries can be studied by multiple Coulomb excitation

SPES 15-17/11/10

allow to draw a definite conclusion

output of GOSIA code:

beam intensity: 1.4·10⁴ ion/sec beam energy: 600 MeV

¹⁴⁶ Ba	Energy [keV]	Y [mb·mg/cm²/sr]	counts/hour
$2_1 \rightarrow 0_1$	181	1205	14
41 → 21	513	382	4
61 → 41	958	102	1

SPES 15-17 Nov. 2010

Coulex of ^{140,142}Xe

^{140,142}Xe isotopes: what is known

?

136 138 140 142 144 A

0

?

SPES 15-17 Nov. 2010

output of GOSIA for ^{140,142}Xe:

beam intensity: 1.3·10⁷ ion/sec beam energy: 580 MeV

¹⁴⁰ Xe	Energy [keV]	Y [mb·mg/cm²/sr]	counts/hour
$2_1 \rightarrow 0_1$	376	567	6333
4 ₁ →2 ₁	458	160	1787
61 → 41	582	23	257

beam intensity: 7.5·10⁵ ion/sec beam energy: 600 MeV

¹⁴² Xe	Energy [keV]	Y [mb·mg/cm²/sr]	counts/hour
21 → 01	287	735	459
4 ₁ →2 ₁	403	138	86
6 ₁ →4 ₁	490	23	14

Conclusions

• We are setting up an apparatus for detection of radioactive ions. It can be coupled to a Gamma array (Galileo, Agata, Gasp)

•We propose measurements in ¹³⁴Sn, ¹³⁶Te, ¹⁴⁶Ba and ^{140,142}Xe

•We present the results of GOSIA calculations for ¹³⁴Sn, ¹³⁶Te, ¹⁴⁶Ba and ^{140,142}Xe

We are open to proposal of measurements in other regions of the chart of nuclides