ntroduction	The N=82 shell	Nuclear astrophysics	Experimental Setup	Conclusion

Direct reactions with SPES beams: Nuclear magicity at Z~50 and N~82 n-capture cross section via surrogate method

E. Farnea, D. Mengoni, G. de Angelis

University of the West of Scotland, Paisley - U.K. INFN - Sezione di Padova, Padova - Italy

> SPES workshop, LNL - Italy Nov 15th÷17th, 2010

Introduction	The N=82 shell 0000000	Nuclear astrophysics	Experimental Setup o	Conclusion o

Outline

The N=82 shell

- Spectroscopic factors
- Collectivity

3 Nuclear astrophysics

Conclusion

Introduction	The N=82 shell	Nuclear astrophysics	Experimental Setup	Conclusion
•00				

Nuclear Physics

Introduction	The N=82 shell	Nuclear astrophysics	Experimental Setup	Conclusion
•00				

Nuclear Physics

 Introduction
 The N=82 shell
 Nuclear astrophysics
 Experimental Setup

 oo
 oo
 132 Sn

SPE

Conclusion

The N=82 shell

Nuclear astrophysics

Experimental Setup

Conclusion o

Around doubly-magic ¹³²Sn SO term in exotic matter

SO-interaction scales with the derivative of the nucleon densities

Introduction OCO The N=82 shell OCOCOSO Nuclear astrophysics OCOCOSO Shift of the proton single-particle energies

Attractive when spins of nucleons are antiparallel to their orbital angular momenta

tensor interaction

Introduction	The N=82 shell	Nuclear astrophysics	Experimental Setup	Conclusion
	000000			

The N=82 shell closure Single particle levels and spectroscopic factors in the ¹³²Sn region

The N=82 shell ○○●○○○○ Nuclear astrophysics

Experimental Setup

Conclusion o

Implications on nuclear astrophysics

The N=82 shell 000€000 Nuclear astrophysics

Experimental Setup

Conclusion o

Proton orbit above Z=50

UWEST APSCOTLAME

magnifying effect of SO

agreement with MF theory

fragmented or single

particle levels?

term

The N=82 shell 0000●00 Nuclear astrophysics

Experimental Setup

Conclusion o

Neutron orbit above N=82

The N=82 shell 00000●0 Nuclear astrophysics

Experimental Setup

Conclusion o

Proposed reactions at SPES

Expected SPES-beam intensity: 10^{5÷8} pps

Systematic measurements in the region

- ▶ (d,p) : ¹³³Sn, ¹³⁴Sn, ¹³³Sb, ¹³¹In
- ▶ (d,t) : ¹³¹Sn, ¹³⁴Sn, ¹³¹In
- ▶ (d,³He) : ¹³¹Sn, ¹³³Sn, ¹³¹In

 Introduction
 The N=82 shell
 Nuclear astrophysics
 Experimental Setup
 Conclusion

 000
 000000
 000000
 0
 0

Inverse kinematics with short-lived beams direct reactions: (d,p),(d,t),(d,³He),...

The N=82 shell

Nuclear astrophysics

Experimental Setup

Conclusion o

Nucleosynthesis beyond Fe

- Neutron captures are not hindered by coulomb repulsion
- Main mechanism: seed elements encounter an external neutron flux
- 2 primary contributions, r(rapid) and s(slow) processes identified
- Main difference: neutron density
- Additional p-process: proton capture, insignificant for high Z

The N=82 shell

Nuclear astrophysics

Experimental Setup

Conclusion o

Nuclear physics of the s process

- s process: slow neutron capture, neutron captures much slower than beta decays
- 3 peaks (ls,hs,Pb) at magic N, local approximation in between
- Site: AGB stars
- Neutron sources: ¹³C(α,n)¹⁶O,
 ²²Ne(α,n)²⁵Mg
- Observations and results strongly linked to processes in the specific star

 the favoured neutron source predicts the AGB-star masses

Introduction	The N=82 shell	Nuclear astrophysics	Experimental Setup	Con
		00000		

Indirect Determination of Cross Sections

The Surrogate Nuclear Reactions approach is an indirect method for determining XS of CN reactions difficult to measure directly.

clusion

Introduction	The N=82 shell	Nuclear astrophysics	Experimental Setup	Conclusion
000	0000000	000●00	o	o
-				

(n, γ cross section

Various direct-reaction mechanisms can be employed to create the compound nucleus of interest.

Introduction	The N=82 shell	Nuclear astrophysics	Experimental Setup	Conclusion
	0000000	0000●0	o	O

Theory

The N=82 shell

Nuclear astrophysics

Experimental Setup

Conclusion o

Possible SPES reaction: ¹²³Sn(d,p)¹²⁴Sn

- 2 γ coincidences
- exit-channel prob
- CN cross section

The N=82 shell

Nuclear astrophysics

Experimental Setup

Conclusion o

Experimental Setup

The N=82 shell

Nuclear astrophysics

Experimental Setup

Conclusion

Summary and conclusions

