Yrast spectroscopy near doubly magic ¹³²Sn and ²⁰⁸Pb - possibilities with radioactive beams

Bogdan Fornal

Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland

The SPES Workshop, November 15-17, 2010, Legnaro (Pd), Italy

Outline

- How to access excited structures in the neutron-rich nuclei around ¹³²Sn and ²⁰⁸Pb
 - deep-inelastic reactions
 - spontaneous or induced fission
- Similarities in the yrast structures near ¹³²Sn and ²⁰⁸Pb
- Do these similarities emerge from shell model calculations with the "universal" interaction?
- Perspectives with radioactive beams

How to access **YRAST** states in neutron-rich nuclei near ¹³²Sn and ²⁰⁸Pb

Experimental techniques used to access YRAST states in neutron-rich nuclei near ¹³²Sn and ²⁰⁸Pb

around ¹³²Sn

- fission (spontaneous or induced) of uranium and transuranium nuclei
 - prompt spectroscopy
 - high-spin isomer spectroscopy

 projectile fission and fragmentation reactions at intermediate energies
decay of high-spin isomers

around ²⁰⁸Pb

- deep-inelastic processes occurring during heavy-ion reactions
 - prompt spectroscopy
 - high-spin isomer spectroscopy
- fragmentation reactions
 - at intermediate energies
 - decay of high-spin isomers

Discrete γ -Rays in the Reactions of 143 MeV ³²S with ⁵⁸Ni

G. Viesti

INFN and Dipartimento di Fisica dell'Università di Padova, Padova, Italy

B. Fornal*, F. Gramegna, G. Prete, and R.A. Ricci¹ INFN Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy ¹ and Dipartimento di Fisica dell'Università di Padova, Padova, Italy

G. D'Erasmo², L. Fiore, G. Guarino, and A. Pantaleo INFN² and Dipartimento di Fisica dell'Università di Bari, Bari, Italy

I. Iori and A. Moroni INFN and Dipartimento di Fisica dell'Università di Milano, Milano, Italy

P. Blasi and F. Lucarelli INFN and Dipartimento di Fisica dell'Università di Firenze, Firenze, Italy

Received February 18, 1986

Deep-inelastic reactions studied by means of the discrete γ-ray spectroscopy at LNL di Legnaro in the 1980's

³²S + ⁵⁸Ni, E_{beam}= 143 MeV, XTU Tandem at LNL Legnaro

Gamma rays from the deep-inelastic reaction products

Deep-inelastic heavy-ion reactions – a tool for gamma-ray spectroscopy of neutron-rich nuclei

thick target $\gamma - \gamma$ coincidences

R. Broda *et al.*,
Phys.Lett. B (1990)

γ -ray array (e.g.,GS, GASP, EUROB.,AGATA)

γ - reaction productcoincidences

Experimental technique that we used to access YRAST states in neutron-rich nuclei around ²⁰⁸Pb:

prompt γ -ray spectroscopy of deep-inelastic reaction products following the reaction $^{208}Pb+^{238}U$

Product distribution in deep-inelastic reaction of ²⁰⁸Pb (1360 MeV) on ²³⁸U

²⁰⁸Pb + ²³⁸U

The nuclei around ²⁰⁸Pb, <u>produced in deep-inelastic reactions</u> of ²⁰⁸Pb on ²³⁸U, in which we have identified yrast structures by using $\gamma - \gamma - \gamma$ coincidence thick-target technique with GAMMASPHERE

Experimental technique that we used to access YRAST states in neutron-rich nuclei **around** ¹³²Sn:

prompt γ-ray spectroscopy of fission products following spontaneous fission of ²⁴⁸Cm

The nuclei around ¹³²Sn produced in <u>spontaneous fission of ²⁴⁸Cm</u> in which we have identified yrast structures by using γ-γ-γ coincidence thick-target technique with GAMMASPHERE

Results on the <u>most neutron-rich</u> nuclei around ¹³²Sn produced in spontaneous fission of ²⁴⁸Cm that we studied by using $\gamma - \gamma - \gamma$ coincidence thicktarget technique with GAMMASPHERE

Realistic shell model calculations using a V_{low-k} approach – a theoretical framework for microscopic shell-model calculations starting from <u>the free nucleon–nucleon potential</u>

and its application to exotic nuclei around doubly magic ¹³²Sn.

A.Covello, L.Coraggio, A.Gargano, N.Itaco, Prog. Part. Nucl. Phys. 59, 404 (2007).

Similarity of proton-neutron multiplets in ¹³⁴Sb and ²¹⁰Bi

1.0

0.5

0.0

E [MeV]

Yrast states - comparison with results of the realistic shell model calculations using a V_{low-k} approach

To get V_{low-k} effective interaction we used: Computational Environment for Nuclear Structure (CENS)

Authors: T. Engeland, M.Hjorth-Jensen and G.R. Jansen Reference article: M.Hjorth-Jensen, T.T.S.Kuo, E.Osnes, Physics Reports 261, 125-270 (1995)

CD-Bonn potential, $\Lambda = 2.2 \text{ fm}^{-1}$,

model spaces: (Z=50-82, N=82-126), (Z=82-126, N=126-184)

For shell-model calculations we used:

computer code OXBASH,

B. A. Brown, A. Etchegoyen, W. D. M. Rae, N. S. Goldwin, W. A. Richter, C. H. Zimmerman, W. E. Ormand, and J. S. Winfield, MSU-NSCL Report No. 524, 1985.

s.p.s. energies from experiment

CONCLUSION: **similarity** between the yrast states in nuclei near ¹³²**Sn and** ²⁰⁸**Pb emerges** from the shell-model interactions that are derived from a realistic nucleon-nucleon potential without any adjustable parameters. Perspectives for accessing neutron-rich nuclei near ²⁰⁸Pb by using a beam of ¹³²Sn

Let's consider reactions:

²⁰⁸Pb + ²³⁸U

Deep-inelastic reaction ¹³²Sn + ²⁰⁸Pb at E_{beam}=750 MeV with an intermediate-thick target

The kinematics is favorable for stopping Pb-like neutron-rich nuclei in the target

Perspectives for reaching yrast states in neutron-rich Sb isotopes by employing radioactive ^ASn beams on a ⁷Li target

⁷Li(A Sn, $\alpha 2n$) $^{A+1}$ Sb

Conclusions and Outlook

- Deep-inelastic reactions and spontaneous fission of transuranium nuclei - extremely efficient in elucidating yrast structures near ¹³²Sn and ²⁰⁸Pb.
- Similarity between yrast states in nuclei near ¹³²Sn and ²⁰⁸Pb that was observed experimentally, also emerges from the shell-model calculations with Vlow-k realistic interactions.

- Discrete gamma-ray yrast spectroscopy of very neutron-rich nuclei located south-east of ²⁰⁸Pb might be possible with deep-inelastic reactions induced by Sn-like radioactive beams.
- For gamma-ray spectroscopic studies of neutron-rich isotopes near ¹³²Sn one may use other methods: for example, radioactive beams of heavy Sn isotopes on a thin ⁷Li target.

Collaborators

R. Broda, W. Krolas, K-H. Maier, T. Pawlat, B. Szpak, J. Wrzesinski, B. Fornal

R.V.F. Janssens, S. Zhu, M.P. Carpenter, D. Seweryniak et al.

G. Lane, G. Dracoulis et al.

P. Daly, P. Bhattacharyya , Z. Grabowski C.T. Zhu IFJ PAN Krakow, Poland

ANL Argonne, USA

ANU Canberra, Australia

Purdue University, USA