Towards a realistic Si digitization for the µ-collider detector

Simone, Elodie, Rohit (UCB/LBL), Paolo, Alessio (Padova)

Reminder

- First validation of realistic silicon digitization (see later for TODO items)
 - Only vertex detector barrel considered so far (highest density)

- Using two main samples:
 - Single muon E = 10 GeV (uniform in theta in the VXD barrel)
 - Same as above + BIB (now @ 100%)

BIB overlay

- Moved to new BIB files from Massimo
- Fix to Overlay module for truth info:
 - Allows to strip MCParticle but store momentum of particle on truth hits that is needed for digi (also resets MCParticle pointer that otherwise becomes invalid)
- Caveat: Overlay module select <u>random files</u> one after the other
 - Need to merge mu+/mu- BIB files such that each file has one complete BIB event
 OR have only one input BIB event (thanks to Karol for digging into this!)
 - Corollary: using only a fraction of BIB actually gives an heavy-biased BIB distribution
- Other changes:
 - LCTuple: allows to store hits information (PR in progress)

Additional BIB validation

Checked that BIB is reasonably symmetric in Z

Prompt vs BIB separation

New: added timing cuts to hits before considering size-Y vs theta separation

```
<parameter name="Collection_IntegrationTimes" type="StringVec" >
VertexBarrelCollection -0.18 0.24
VertexEndcapCollection -0.18 0.24
```

- Separated size cuts in theta ranges and layers
 - Note: theta calculated from vector "reconstructed cluster position" – "Int. point"

Cluster size in Y direction vs θ (double-layer #0)

Separation power

Cuts chosen to retain high efficiency for prompt particles "by eye"

loose/tight cut size-Y <= X/Y	Layer 0,1	Layer 2,3	Layer 4,5	Layer 6,7
0<θ*<30°	2/2	2/2	2/2	3/2
30<θ*<50°	3/3	3/3	3/3	3/2
50<θ*<70°	6/5	4/4	3/3	4/2
70<θ*	/5	/5	/3	/3

Performance in single muon and BIB for Loose/Tight cuts:

Cut Efficiency	Loose	Tight
Single muon	99.7%	99.6%
Single muon + BIB	55.2%	43.7%

- Main difference from last time:
 - New BIB files, and fixed overlay "random file" selection
 - Applying tight timing cuts before evaluating these efficiencies
 - New granularity of size-Y cuts

TODO

- Today: some additional separation power studies and small fixes
- Work-in-progress / important todo in digi:
 - Discretization of measured charge (finite resolution, 4 bits in current FE chips)
 [Elodie]
 - Threshold dispersion (not all pixels can be tuned exactly at the same thr) [Elodie]
 - Parametrized time measurement digitization → right now just true G4 timing [Elodie/Simone]
 - Main branch adopts a simplified approach with 1 Geant4 deposit creating 1 cluster of pixels → no overlap of particles on the same hit is simulated [Paolo/Alessio]
- Work-in-progress / important todo in separation power studies:
 - Use additional information (size X, energy?) [Rohit]
 - Test with different particles (protons, ...) [Rohit]
 - Test with realistic beamspot [Rohit/Simone]
 - Test with non-prompt particles (e.g. for b-hadron decay) [Rohit/Simone]
 - Implement tool for filtering hits [Simone/Rohit]
 - Prepare reco steering file with realistic digi in VXD + hits filtering option [Simone]

BACKUP

Pixel digitization

- Baseline starting model from CMS pixel digitization (Twiki)
- Main effects included so far:
 - Split of G4 charge (1 value per volume per particle) into e⁻ holes creation along particle path with energy deposition fluctuations
 - Lorentz angle effects
 - Diffusion of charge when drifting
 - Front-End (FE) electronics threshold and noise (on signal)

- Main effects not yet included (very much ok for a start):
 - Discretization of measured charge (finite resolution, 4 bits in current FE chips)
 - Threshold dispersion (not all pixels can be tuned exactly at the same thr)
 - Parametrized time measurement digitization → right now just true G4 timing
 - Main branch adopts a simplified approach with 1 Geant4 deposit creating 1 cluster of pixels → no overlap of particles on the same hit is simulated
 - Ok for initial studies, its importance should be studied eventually

Code status

- Digitization code on github (branch master)
 - Contains the fully validated code used in this presentation
 - Branch sidigi-dev of LCTuple packages to include detailed cluster and individual pixel hit information, when enabled (see full diff on github)
- Digitization code has also an experimental branch
 - Split digitization and cluster reconstruction properly
 - → allows multiple particle to create merged pixel clusters
 - Implements multi-threaded space-time based clustering!

- Simulated hits are placed in space and time
- We can take a slice of space and time, with simulated hits sorted according to the time
- The volume of space-time is partitioned according to the ladders (multi threading)
- All the simulated hits in a ladder must be aggregated with a suitable algorithm

Digitization parameters / changes

- Diffusion formula/parameter changed compared to original model
 - Replaced with something I'm more familiar with (and widely used in literature)
- Default FE electronics threshold and noise set to something more in-line with modern FE pixel electronics (and a bit beyond that)
 - this is necessary since the super-thin (50µm thickness vs 100-250µm used for LHC/HL-LHC detectors) silicon sensors in our simulation
 - Note: thin sensors useful for accurate time measurements as well
- In the future, study performance dependence to determine technology requirements!
- Main parameters for reference:

Parameter	Branch: master	Notes
Threshold	500 e ⁻	Consistent with a bit beyond state-of-art electronics
Diffusion	0.07	Assuming reasonable operating depletion voltages
Electronic noise	80 e ⁻	Consistent with a bit beyond state-of-art electronics
Lorentz angle	0.8	To be x-checked
Cut on δ rays	30 keV	Speed vs accuracy
Segment length	5 μm	Speed vs accuracy