

Mini-workshop Congiunto INFN LNF - INFN Roma: New results on theoretically clean observables in rare B-meson decays from LHCb

$B \rightarrow K\ell^+\ell^-$ family

• Similarly to $B_s^0 \to \mu^+ \mu^-$ decays, they are FCNC $b \to s\ell\ell$ transitions with an hadron in

- Multitude of observables complementary to $B_s^0 \to \ell^+ \ell^-$
- No helicity suppression, higher branching fractions $\sim 10^{-6}$

$b \rightarrow s\ell\ell$ observables

- Physics depends on dilepton invariant mass $q^2 = m_{\ell\ell}^2$
- Observables available:
 - Branching fractions (difficult to predict)
 - Angular observables (cleaner, but still tricky)
 - Lepton universality (theoretically clean)
- Over the past decade observed a coherent set of tensions with the SM predictions

Global fits

- Combination of all $b \to s\ell^+\ell^-$ measurements
- Measurement point to new vector coupling C_{0}^{μ}
- $B \to K^{(*)}\ell\ell$ BF and angular observables potentially suffer from hadronic uncertainties

• $B_s^0 \rightarrow \mu^+ \mu^-$ and LFU observables have a very clean theory predictions: improving experimental precision is critical

Flavio Archilli - Heidelberg University

Selection and strategy

[GeV

 $\overline{\mathcal{O}}$

- Offline selection based on:
 - Flight distance of B_s^0
 - PID information to separate kaons from muons

•
$$|m_{K^+K^-} - m_{\phi}| < 12 \,\mathrm{MeV}/c^2$$

- Further background rejection obtained by the use of a multivariate classifier:
 - $B_s^0 \to J/\psi\phi$ for signal and upper sideband for background

$\mathscr{B}(B^0_s \to \phi \mu^+ \mu^-)$ result

- Run 1 result:
 - [JHEP 09 (2015) 179], [LHCb-PAPER-2020-046]
- SM LCSR:
 - [JHEP 08 (2016) 098], [EPJ C 75 (2015 382)], [arxiv:1810.08132]
- SM LCSR+Lattice:
 - +[PRL 112 (2014) 212003], +[PoS LATTICE2014 (2015) 372]

Low- q^2 ([1.1,6.0] GeV²/ c^4): 1.8σ (SM LCSR) 3.6σ (SM LCSR+Lattice)

- $d\mathscr{B}/dq^2 = (4.77 \pm 1.01) \times 10^{-8} \,\text{GeV}^2/c^4$
- $d\mathscr{B}/dq^2 = (5.37 \pm 0.66) \times 10^{-8} \,\text{GeV}^2/c^4$

Integrated over q^2 : $\mathscr{B}(B_s^0 \to \phi \mu^+ \mu^-) = (8.14 \pm 0.21 \pm 0.16 \pm 0.21 \pm 0.03) \times 10^{-7}$ q^2 extrap. syst. stat. norm. 7

Angular analysis

• $B \to K^* (\to K\pi) \mu^+ \mu^-$ can be fully-described by 4-dimensional decay rate:

$$\frac{1}{\mathrm{d}(\Gamma + \overline{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \overline{\Gamma})}{\mathrm{d}\overline{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4}(1 - F_L)\sin^2\theta_K + F_L\cos^2\theta_K\right] \\ + \frac{1}{4}(1 - F_L)\sin^2\theta_K\cos 2\theta_\ell \\ - F_L\cos^2\theta_K\cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell \\ + S_4\sin 2\theta_K\sin 2\theta_\ell\cos \phi + S_5\sin 2\theta_K\sin^2\theta_\ell \\ + \frac{4}{3}A_{FB}\sin^2\theta_K\cos \theta_\ell + S_7\sin 2\theta_K\sin \theta_\ell \\ + S_8\sin 2\theta_K\sin 2\theta_\ell\sin \phi + S_9\sin^2\theta_K\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_K\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_K\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_K\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_K\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_K\sin^2\theta_K\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_Ki^2\theta_Ki^2}$$

Re-parametrisation of the angular coefficients with reduced dependency on FF: $P'_5 = \overline{-F_I}$

- $\sin\theta_{\ell}\cos\phi$
- $\theta_{\ell} \sin \phi$
- $\sin^2\theta_{\ell}\sin 2\phi$]

8 observables F_L, A_{FB}, S_i depend on $C_7 C_9$ and C_{10} and FF \rightarrow large uncertainty at leading order

Angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ and $B^+ \to K^{*+} \mu^+ \mu^ B^0 \to K^{*0} \mu^+ \mu^-$ [PRL 125 (2020) 0118002] $B^+ \to K^{*+} \mu^+ \mu^-$ [PRL 126 (2021) 161802] - Update using Run1+2016 data - Update using Run1+Run2 data - Tension with SM: 3.3σ - Tension with SM: 3.1σ 1.5LHCb LHCb Run 1 + 2016 + Data 9 fb⁻¹ SM from DHMV SM from DHMV 0.5 SM from ASZB 0.5 D_{5} 0 -0.5 -1 —] -1.5

10

5

15

 $q^2 \, [\, \text{GeV}^2 / c^4]$

Lepton Flavour Universality

- In the SM, leptons couples with the gauge bosons in the same way, only difference between the three families is the mass
 - BF differs only by the phase space and helicity suppression
- Strong test of lepton universality using ratio:

$$R_{K^{(*)}} = \frac{\mathscr{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathscr{B}(B \to K^{(*)}e^+e^-)} \stackrel{\text{SM}}{\simeq} 1$$

- Extremely clean test:
 - cancellation of hadronic form-factors uncertainties in predictions. $\sim \mathcal{O}(10^{-4})$ uncertainty
 - possible deviation from QED corrections $\sim O(1\%)$ below resonance [Bordone, Isidori, Pattori EPJC(2016)76:440]
- \blacksquare Any significant deviation in $R_{K^{(*)}}$ is a clear sign of New Physics

Lepton Flavour Universality tests

R_K with the full LHCb data set

$$R_{K} = \frac{\int_{1.1 \,\text{GeV}^{2}}^{6.0 \,\text{GeV}^{2}} \frac{d\mathscr{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int_{1.1 \,\text{GeV}^{2}}^{6.0 \,\text{GeV}^{2}} \frac{d\mathscr{B}(B^{+} \to K^{+}e^{+}e^{-})}{dq^{2}} dq^{2}}$$

- Previous measurement in tension with the SM at 2.5σ
- This update:
 - Add remaining 4fb⁻¹ of Run 2 collected in 2017 and 2018
 - Doubling the number of *B*'s as previous analysis
- Follow the same analysis strategy as our previous measurement

Electrons vs muons (1)

magnetic field

- PV Electrons lose a large fraction of their energy through Bremsstrahlung radiation
- Most of the electrons will emit one energetic photon before magnet

• Look for photon clusters compatible with the direction of the electron before the magnet • Recover the energy loss by adding the cluster energy back to the electron momentum

Electrons vs muons (2)

- Bremsstrahlung recovery not sufficient, worse mass resolution!
- Lower trigger rate in case of electrons due to ECAL occupancy (higher thresholds)
 - Use of 3 exclusive trigger categories for e^+e^- final states
- Tracking and Particle ID efficiencies larger for muons Flavio Archilli - Heidelberg University

From previous result, LHCb [PRL122(2019)191801]

14

Measurement strategy

• Measure R_K as a double ratio to cancel out most systematics:

$$R_{K} = \frac{\mathscr{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathscr{B}(B^{+} \to K^{+}J/\psi(\mu^{+}\mu^{-}))} \left/ \frac{\mathscr{B}(B^{+} \to K^{+}e^{+}e^{-})}{\mathscr{B}(B^{+} \to K^{+}J/\psi(e^{+}e^{-}))} = \frac{N_{\mu^{+}}^{\text{ran}}}{N_{\mu^{+}}^{J/\psi}}$$

- Rare and J/ψ modes share identical selections except from cut on q^2
- Yields determined from a fit to the invariant mass of the final state particles
- Efficiencies computed using simulation that is calibrated with control channels in data

Selection and background

- Peaking backgrounds from exclusive Bdecays suppressed to negligible level using particle ID and mass vetos
 - cascade backgrounds: e.g. $B^+ \rightarrow \overline{D}^0 (\rightarrow K^+ e^- \nu) e^+ \overline{\nu}$: cut on $m(K^+ \ell^-) > m_{D^0}$
 - misID backgrounds: e.g. $B \to K \pi^+_{(\to e^+)} \pi^-_{(\to e^-)}$ cut on electron PID
- Multivariate selection to reduce combinatorial background and improve signal significance (BDT)

Background

- Residual background suppressed by choice of $m(K^+\ell^+\ell^-)$ window
 - $B^+ \rightarrow K^+ J/\psi(e^+ e^-)$
 - Partially reconstructed dominated by $B \to K^+ \pi^- e^+ e^-$ decays
 - Model in fit calibrating simulated templates from data and by constraining their fractions between trigger categories
 - Cross-check using control regions and changing $m(K^+\ell^+\ell^-)$ window

Efficiency calibration

- Efficiencies estimated from simulated samples, calibrated on control data. Identical procedure to our previous measurement [PRL 122 (2019) 191801], and it covers:
 - Trigger efficiency
 - Particle identification efficiency
 - B^+ kinematics
 - Resolution of q^2 and $m(K^+e^+e^-)$

• This leads to %-level control of efficiency ratios. Verify procedure through host of cross-checks

- $B^+ \to K^+ J/\psi(\ell^+ \ell^-)$ decays:
 - Excellent control channel: samples of 750k electrons and 2.3M muons
 - Can be isolated from background using J/ψ mass constrain

Cross-check: measurement of $r_{J/w}$

• To ensure that the efficiencies are under control, check

$$r_{J/\psi} = \frac{\mathscr{B}(B^+ \to K^+ J/\psi)}{\mathscr{B}(B^+ \to K^+ J/\psi)}$$

- known to be true within 0.4% (very stringent check!)
- **Result**:
 - $r_{J/w} = 0.981 \pm 0.020$ (stat + syst)
- Checked that the value of $r_{J/\psi}$ is compatible with unity for new and previous datasets and in all trigger samples

Cross-check: $r_{J/\psi}$ as a function of kinematics

• Flatness of $r_{J/\psi}$ 2D plots gives confidence that efficiencies are understood across entire decay phase-space.

• If take departure from flatness as genuine rather than fluctuations (accounting for rare-mode kinematics) bias expected on R_K is 0.1%

• Test efficiencies are understood in all kinematic regions by checking $r_{J/\psi}$ is flat in all variables examined.

Cross-check: $R_{\psi(2S)}$

• Can also test that R_K measured at the $\psi(2S)$ is 1:

•
$$R_{\psi(2S)} = \frac{\mathscr{B}(B^+ \to K^+ \psi(2S)(\mu^+ \mu^-))}{\mathscr{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))} / \frac{\mathscr{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))}{\mathscr{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))}$$

- Validation of q^2 dependence of efficiency correction
- Compatible with unity to 1% precision: $R_{\psi(2S)} = 0.997 \pm 0.011 \text{ (stat + syst)}$

Systematic uncertainties

- **Dominant source:** ~1%
 - Choice of fit model
 - Associated signal and partially reconstructed background shape
 - Statistics of calibration samples
- Sub-dominant sources: ~0.1%
 - Efficiency calibration
 - Dependence on tag definition and trigger biases
 - Precision of the q^2 and $m(K^+e^+e^-)$ smearing factors
 - Inaccuracies in material description in simulation

• Total relative systematic of 1.5% in the final R_K measurement

• Expected to be statistically dominated

- Bootstrapping method that takes into account correlations between calibration samples and final measurement

Measuring R_{K}

• R_K is extracted as a parameter from an unbinned maximum likelihood fit to $m(K^+\mu^+\mu^-)$ and $m(K^+e^+e^-)$ distributions in $B^+ \to K^+\ell^+\ell^-$ and $B^+ \to K^+J/\psi(\ell^+\ell^-)$ decays

• Correlated uncertainties on efficiency ratios included as multivariate constraint in likelihood

[arxiv:2103.11769] Submitted to Nature Physics

R_K with full Run 1 and Run 2 data sets

$R_K = 0.846^{+0.042}_{-0.039} (\text{stat})^{+0.013}_{-0.012} (\text{syst})$

- *p*-value under SM hypothesis: 0.001
 - Evidence of LFU violation at 3.1σ

- Compatibility with the SM obtained by integrating the profiled likelihood as a function of R_K above 1
 - taking into account 1% theory uncertainty on R_K [EPJC76(2016)8,440]

[arxiv:2103.11769] Submitted to Nature Physics

R_K with full Run 1 and Run 2 data sets

 $R_K = 0.846^{+0.042}_{-0.039} (\text{stat})^{+0.013}_{-0.012} (\text{syst})$

- *p*-value under SM hypothesis: 0.001
 - Evidence of LFU violation at 3.1σ
- Using R_K and previous measurement of $\mathscr{B}(B^+ \to K^+ \mu^+ \mu^-)$ determine [JHEP06(2014)133] $\mathscr{B}(B^+ \to K^+ e^+ e^-)$
 - Suggests electrons are more SM-like than muons.

$$\frac{\mathrm{d}\mathscr{B}(B^+ \to K^+ e^+ e^-)}{\mathrm{d}q^2} = \left(28.6^{+1.5}_{-1.4}(\mathrm{stat}) \pm 1.4(\mathrm{syst})\right) \times$$

Flavio Archilli - Heidelberg University

Current EFT fit

Fit from W. Altmannshofer and P. Stangl <u>arXiv:2103.13370</u>

Similar fits from other groups: Algueró et al., arXiv:1903.09578 Kowalska et al., arXiv:1903.10932 Ciuchini et al., arXiv:2011.01212 Datta et al., arXiv:1903.10086 Arbey et al., arXiv:1904.08399 Geng et al., arXiv:2103.12738

could be mimicked by $c\bar{c}$ effects

Projections

LHCb

• Higher luminosity 50 fb⁻¹ by the end of Run 4

Belle II

- Much cleaner than LHC environment
- Aim at collecting 50 ab⁻¹ around 2031
- Not as much stat as LHCb in charged modes:
 K⁺µµ : 1 fb⁻¹ LHCb ≃ 2.5 ab⁻¹ Belle II
 K⁺e⁺e⁻ : 1 fb⁻¹ LHCb ≃ 1 ab⁻¹ Belle II

courtesy	of M. B	orsato	I HCb: Nair of current r Belle II: Ser plots in 202	Belle II R Belle II R LHCb R_P LHCb R_P ve extrapolati esults with \mathcal{L}_i nsitivity from 0 talk	K K K K K K K on <i>int</i>
LHCb R_K syst					
QED uncertainty					
2015	2020	2025	2030	2035	.

Conclusions

- - Several 3σ deviations, all in $b \rightarrow s\ell\ell$
 - EFT Global fits point to a coherent pattern
- More measurements needed to solve the puzzle
 - LFV measurements....
 - Upcoming LHCb upgrade
 - Other experiments: Belle II, CMS, ATLAS

• Flavour anomalies in the $b \rightarrow s\ell\ell$ sector were reinforced by recent measurements

• Upcoming analyses of Run 2 data: R_{K^*} update and other R_X tests, Angular analysis,

Backup

Trigger strategy

- Same approach as in the previous analysis:
 - for $\mu\mu$ channels, trigger on muons: LOMuon
 - for ee channels, use three exclusive trigger categories: LOElectron, LOHadron, LOTIS
 - systematics calculated and cross-checks performed for each trigger individually

Control mode fits

Signal shape

- The $m(K^+\ell^+\ell^-)$ distributions of the rare mode are obtained from simulated decays,
- In the subsequent fit to the rare mode the $m(K^+\ell^+\ell^-)$ lineshape is fixed.
- The q^2 scale/resolution in the simulation is corrected using the same procedure \rightarrow the efficiency of the q^2 cut is calibrated from the data

calibrating the peak and width of the distribution using $B^+ \to K^+ J/\psi(\ell^+ \ell^-)$ data.

 $B^+ \to K^+ \ell^+ \ell^-$

Parameter overlap

Parameter overlap

Efficiency calibration

- channels selected from data:
- Calibration of q^2 and $m(K^+e^+e^-)$ resolutions Use fit to $m(J/\psi)$ to smear q^2 in simulation to match that in data
- Calibration of B^+ kinematics
- Trigger efficiency calibration

• Ratio of efficiencies determined with simulation carefully calibrated using control

• Particle ID calibration: tune particle ID variables for diff. particle species using kinematically selected calibration samples $(D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+...)$ [EPJ T&I(2019)6:1]

Efficiency calibration

After calibration, very good data/MC agreement in all key observables

to 20% in $r_{J/\psi}$.

biases that affect the resonant and nonresonant decay modes similarly.

Maximal effect of turning off corrections results in relative shift $R_K(+3 \pm 1)\%$ compared

Demonstrates the robustness of the double-ratio method in suppressing systematic

Current EFT fit

- Consider new physics in $b \rightarrow s\mu\mu$ only results:
 - Clean observables ($R_{K^{(*)}}$, $\mathscr{B}(B_s^0 \to \mu^+ \mu^-)):$ pull of 4.7σ in C_{10} or $C_9 - C_{10}$
 - Other $b \rightarrow s\mu\mu$ observables: pull of 4.9 σ in C_9 or $C_9 - C_{10}$
 - All rare *B* decays: pull of 6.2σ in C_9 or $C_9 C_{10}$
- Otherwise, slightly favoured:
 - universal contribution to C_9 from $b \to s\ell\ell$
 - $b \rightarrow s\mu\mu$ contributes to $C_9 C_{10}$

1.5

1.0

0.5

0.0

-0.5

-1.0

-2.0

 $\mathcal{C}^{bs\mu\mu}_{10}$

39

V	7	0						
_	_	-	-	-	-	-	_	
-	-	-	-	-	-	-	1	
							1 1	
	_	_	_	_	_	_	-	
5							1.	(
1		2	(2	_	7		

Angular analysis

$$\frac{1}{2}(1 - F_L)\sin^2\theta_K + F_L\cos^2\theta_K$$
$$F_L)\sin^2\theta_K\cos 2\theta_\ell$$
$$\theta_K\cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi$$
$$\theta_K\sin 2\theta_\ell\cos\phi + S_5\sin 2\theta_K\sin\theta_\ell\cos\phi$$
$$n^2\theta_K\cos\theta_\ell + S_7\sin 2\theta_K\sin\theta_\ell\sin\phi$$

 $+S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi]$

Belle II

- $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$
 - Much cleaner than LHC environment
 - Cross-section $\mathcal{O}(nb)$: need huge luminosity
- Belle II is ramping up
 - Aim at collecting 50 ab⁻¹ around 2031
 - Not as much stat as LHCb in charged modes: $K^+\mu\mu$: 1 fb⁻¹ LHCb \simeq 2.5 ab⁻¹ Belle II $K^+e^+e^-$: 1 fb⁻¹ LHCb \simeq 1 ab⁻¹ Belle II
 - Belle II can do things that are impossible at LHCb
 - Essential validation of the anomalies

Response to muons and electrons is very similar!