

INFN

Ovββ Search Results from One Tonne-Year of CUORE Data

0vββ Search Results from One Tonne Year of CUORE Data

CUQRE

Laura Marini _ April 14 2021

OIT CI

Introduction to the CUORE Experiment
Data Taking
Events Reconstruction
Ονββ Decay Analysis
Results

Physics goal

Double Beta Decay is a second order weak interaction, only directly observable for few nuclei, for which the standard Beta Decay is suppressed or forbidden (even - even nuclei)

2.0 - 2.0 + 2.0

Signature: peak at the Q-value of BB decay spectrum

 $\mathbf{0}\mathbf{v}\mathbf{\beta}\mathbf{\beta}$ decay is a lepton-number violating process that can occur only if neutrinos are Majorana fermions. **The discovery of \mathbf{0}\mathbf{v}\mathbf{\beta}\mathbf{\beta} decay** would demonstrate that lepton number is not a symmetry of nature and that neutrinos are Majorana particles.

Why Tellurium?

¹³⁰Te is chosen for:

- high isotopic abundance (34.17%) allows the use of natural Tellurium
- ¹³⁰Te within the detector absorber of TeO₂ (high detection efficiency)
- Q-value of 2527.515 ± 0.013 keV in a region with low beta/gamma background
- reproducible growth of high quality crystals

SOME HISTORY

30 years of experience in searching for 0vBB decay using the bolometric technique, starting from the pioneering work of Ettore Fiorini.

CUORE is the last of a long series of experiments, from few grams to 742 kg of detector material.

CUORE is the first tonne-scale bolometric experiment in the world.

THE COLLABORATION

113 collaborators

from 27 institution in 4 countries: China France Italy United States

0vββ Search Results from One Tonne-Year of CUORE Data 6

CUORE @ LNGS - ITALY

The mountain of Gran Sasso naturally protects the experiment from cosmic rays

0vββ Search Results from One Tonne-Year of CUORE Data 7

CUORE @ LNGS - ITALY

Laboratori Nazionali del Gran Sasso:

3600 m.w.e. deep muons: ~3x10⁻⁸/(s cm²) -> 10⁶ less than above ground gammas: ~0.73/(s cm²) neutrons: < 4x10⁻⁶/(s cm²)

Cryogenic Underground Observatory for Rare Events

988 TeO₂ crystals 5x5x5 cm³ arranged in 19 towers with 13 floors

natural TeO₂ crystals (742 kg) 130Te active isotope (206 kg) Q $\beta\beta$ ~ 2527.52 keV Source = detector O $\vee\beta\beta$ containment ϵ ~ 88% 984 active channels!

Ονββ Search Results from One Tonne-Year of CUORE Data 9

The CUORE detector is hosted in a cryogen-free cryostat:

World leading cryostat in size and power

- Mass to be cooled < 4K: ~15 tonnes (Pb, Cu and TeO₂) and 3 tonnes to below 50 mK
- Five 1.2 W (@ 4.2 K) Cryomech pulse tube cryocoolers
- DU from Leiden Cryogenics (10 mK: 4 µW cooling power)
- Operating temperature ~10 mK
- Designed to guarantee extremely low radioactivity (material selection and cleaning)
- Low vibrations environment (passive and active noise mitigation techniques)

Bolometric technique

A particle interaction in the absorber causes an increase in temperature, measured by the thermistor

C: absorber capacity △T: temperature variation △E: energy deposition G: thermal conductance τ: signal decay time

0vββ Search Results from One Tonne-Year of CUORE Data 11

Challenges

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{\ln 2}{n_{\sigma}} \frac{N_A i\varepsilon}{A} \sqrt{\frac{Mt}{B\Delta E}}$$

large exposure (mass x time)

- 988 TeO₂ crystal with isotopic abundance of 34.167% for a total mass 206 kg of active material
- foreseen 5 years of data taking

Achievements:

- 2 years of uninterrupted data taking
- high stability of the cryogenic apparatus
- more than 1 tonne-year of exposure accumulated

high energy resolution

- noise reduction techniques
- temperature stability
- fine tuning of detectors parameters to optimize the signal to noise ratio

-

Achievements:

- ᠵ 🛛 < 8 keV FWHM @ Qββ
- ongoing studies for vibrational and microphonic noise mitigation and decorrelation

low background

- strict radiopurity selection on materials
- low background assembly environment
- passive shields from external and cryostat radioactivity

Achievements:

measured background index in agreement with the expectations

0vββ Search Results from One Tonne-Year of CUORE Data 12

Introduction to the CUORE Experiment
Data Taking
Events Reconstruction
Ονββ Decay Analysis
Results

Data taking

More than 1298 kg yr of raw exposure acquired (17 datasets)

Data unblinded in 2021 current analysis 1038.4 kg yr

Data published in PRL 124.122501 (2020) 372.5 kg yr

Data published in PRL 120.132501 (2018) 86.3 kg yr

Typical Dataset

0vββ Search Results from One Tonne-Year of CUORE Data 15

Duty Cycle

67.3 %

Up to December 2018

From January 2019 up to now

11.4 %

After the cryogenics interventions at the beginning of 2019 our duty cycle improved from **35.8%** (19.3% physics data) to **93%** (67.3% physics data)

since 2019 we accumulate an average of 69 kg yr/month

0vββ Search Results from One Tonne-Year of CUORE Data 16

Laura Marini April 14 2021

1.0%

2.0%

11.3 %

Duty Cycle

The improvement in duty cycle is mostly due to:

- Use of an external calibration system
 - Quick calibration string deployment
 - \circ No interference with the cryogenic system
- Routine maintenance to preserve the good performance of the cryogenic system
 - Preemptively deals with potential problems before they have an effect on detector performance
 - Avoids unexpected downtime from sudden issues
- Remote monitoring
 - 24h / 7 days a week remote control of the system for quick response and online data quality evaluation
 - Reduced need for test runs

From January 2019 up to now

Introduction to the CUORE Experiment
Data Taking
Events Reconstruction
Ονββ Decay Analysis
Results

Event reconstruction

0vββ Search Results from One Tonne-Year of CUORE Data 19

Optimum Filter

OF is a matched filter that maximizes the signal to-noise ratio.

We trigger our continuous waveforms and we evaluate the pulses amplitude on the Optimum Filtered data.

 ${}^{\rm ZH/_{\rm Z}}_{\rm M} {}^{10^2}_{\rm 10}$ ${}^{\rm ZH/_{\rm Z}}_{\rm M} {}^{\rm 10^{-1}}_{\rm 10^{-1}}$ 10 10 ANPS 10^{-10} Filtered ANPS 10^{-1} 10^{-12} 10^{2} Frequency (Hz) 10^{-1} 10 Voltage (mV) 009 009 009 009 000 - AP Filtered AP 400 F 300 200 100 E -100-200<u></u> Time (s)

0vββ Search Results from One Tonne-Year of CUORE Data 20

Retriggering with OT

After an online analysis for a quick turn-around on the data quality, the continuous stream of data acquired is re-triggered using the Optimum Trigger (OT) technique.

OT allows to disentangle low energy signals from fake signals produced by noise, lowering the detectors trigger thresholds

- OT algorithm: identifies a signal when the amplitude of the filtered signal waveform exceeds a configurable threshold
- trigger thresholds can be as low are few keV
- 40 keV analysis threshold guarantees that 97% of the channels have a trigger efficiency above 90%
- 40 keV analysis threshold minimizes ROI events contributions from multi-Compton scattered 2615 keV γ events

Thermal gain stabilization

HEATER THERMAL GAIN STABILIZATION:

We use heater events at a fixed energy to study the amplitude dependence for small variations of the operating temperature. Then we correct the amplitude gain variations.

CALIBRATION THERMAL GAIN STABILIZATION: We stabilize the 2615 keV $_{\rm Y}$ peak from the opening and closing calibrations, interpolating from the baseline values we have data at

 Used for <10% of channels, with non-functional or underperforming heaters

Calibration

First 3 datasets were calibrated with an internal ²³²Th source

 This internal calibration system was phased out for a simpler external calibration system in the later datasets

Data is now calibrated with an external ²³²Th-⁶⁰Co source

 2nd order polynomial calibration function with 0 intercept to fit to the 511, 1173, 1333, and 2615 keV calibration lines

Blinding

The blinding algorithm takes a random fraction of the events from the ²⁰⁸Tl line and shift them around the Q_{ββ} and vice versa. The original energies remain encrypted until unblinding. The unblinding occurs only after the full analysis procedure has been fixed.

0vββ Search Results from One Tonne-Year of CUORE Data 24

Coincidences

88% of $0\nu\beta\beta$ decay events deposit all of their energy in one crystal

When more than one bolometer fires in a small time window, the event is likely to be due to radioactive contaminations or muon-induced events.

We assign multiplicity and total energy to such events and select only the ones that do NOT have other signals in coincidence

0vββ Search Results from One Tonne-Year of CUORE Data 25

PULSE SHAPE DISCRIMINATION: PCA

- We adopt a new pulse shape discrimination method based on principal component analysis (PCA)
- For each channel in a dataset, treat the average pulse like it's a leading principal component
- Define a *reconstruction error* for each event **x** using this principal component **w**:

$$RE = \sqrt{\sum_{i=1}^{n} (\mathbf{x}_i - (\mathbf{x} \cdot \mathbf{w})\mathbf{w}_i)^2}$$

• Normalize the RE vs energy to obtain a cut

Ονββ Search Results from One Tonne-Year of CUORE Data 26

PULSE SHAPE DISCRIMINATION: PCA

Tune a S/VB figure of merit to find a cut on the PCA normalized reconstruction error for each dataset

- \circ Use gamma peaks for signal efficiency
- \circ Use alpha region as background proxy

0vββ Search Results from One Tonne-Year of CUORE Data 27

PSA vs PCA

- PCA based method shows an increase in efficiency across all energies compared to our previous pulse shape analysis (PSA)
- Efficiency gain is most pronounced at lower energies
- Similar background rejection capability

CUTS

BASE CUTS:

- manually removed periods of data in coincidence with external events (earthquakes) and periods presenting excessive noise
- removed channels-dataset failing one of the reconstruction steps
- removed events having other pulses in the same time window
- removed channels-datasets performing poorly (energy resolution FWHM > 19keV)

~5% loss in exposure

~3% loss in exposure

ANTICOINCIDENCE CUT (AC): selecting only single hit events

• 40 keV energy threshold, 5 ms time window

PULSE SHAPE DISCRIMINATION (PSD): method based on principal component analysis (PCA) to cut events with anomalous pulse shapes

• Cuts pileup and other detector noise that slips through the previous cuts

Efficiencies

Reconstruction Efficiency: 96.4%

Probability that a good event is triggered, reconstructed properly, and not rejected by basic pile-up cuts
Evaluated on heater events

Anti-coincidence efficiency: 99.3%

Quantifies the probability that an event is not erroneously cut by being in accidental coincidence with an unrelated event

• Calculated on 1460 keV ⁴⁰K peak

Pulse Shape Discrimination efficiency: 96.4%

Fraction of signal-like events passing the PCA-based PSD

• Calculated on events in the $^{60}\text{Co},\,^{40}\text{K},\,\text{and}\,^{208}\text{Tl}\,\gamma$ peaks that passed the anti-coincidence cut

Spectrum after selection

0vββ Search Results from One Tonne-Year of CUORE Data 31

Introduction to the CUORE Experiment
Data Taking
Event Reconstruction
Ονββ Decay Analysis
Results

Detector response and energy resolution

We fit the 2615 keV calibration peak for each channel with

- a) **3-Gaussian response function**
- b) Multi-compton background
- c) Flat background
- d) 30 keV X-ray escape peak
- e) 30 keV X-ray coincidence peak

FWHM harmonic mean @ 2615keV (calibration) -> 7.78 keV

Ονββ Search Results from One Tonne-Year of CUORE Data 33

Detector Response Scaling

We scale the detector response fit from the 2615 keV calibration line to multiple background peaks in the physics data to determine any energy bias and resolution scaling

- Bias is a pol2 function of energy and resolution is a pol1 function of energy
- Depending on dataset, energy bias at $Q_{_{\beta\beta}}$ is < 0.7 keV, and resolution at $Q_{_{\beta\beta}}$ in physics data is similar to the 2615 keV calibration resolution

FWHM harmonic mean @ $Q\beta\beta$ (physics) -> 7.8 keV

0vββ Search Results from One Tonne-Year of CUORE Data 34

1 Ton-Year Analysis: Numbers

Parameters	Values
Number of datasets	15
Number of channels	~934 average per dataset
TeO ₂ exposure	1038.4 kg yr
¹³⁰ Te exposure	288 kg yr
FWHM at 2615 keV in calibration	(7.78 ± 0.03) keV
FWHM at $Q_{ m m p m m m m m m m m m m m m m m$	(7.8 ± 0.5) keV
Total analysis efficiency	(92.4 ± 0.2)%
Reconstruction efficiency	(96.418 ± 0.002)%
Anticoincidence efficiency	(99.3 ± 0.1)%
PSD efficiency	(96.4 ± 0.2)%
Containment efficiency	(88.35 ± 0.09)%

$0\nu\beta\beta$ Fit Method

- Bayesian analysis based on MCMC method (BAT)
- Results on $\Gamma_{0\nu}$ obtained from a flat prior on non-negative rates
- Input parameters from analysis:
 - \circ Detector response function for each channel in each dataset
 - Resolution and energy bias scaling from calibration to physics data
 - Efficiency numbers
- Free parameters:
 - ο Γ_{ov} rate
 - \circ ⁶⁰Co peak rate, scaled for each dataset by the ⁶⁰Co lifetime
 - Background rate for each dataset, and a shared linear slope to the background
- Repeat fit with additional nuisance parameters to account for systematics
 - \circ Systematics have a 0.8% effect on our limit and best-fit value for Γ_{n_v}

$0\nu\beta\beta$ Fit Systematics

Fit parameter systematics			
Systematic	Prior	Effect on the Marginalized $\Gamma_{0\nu}$ Limit	Effect on $\hat{\Gamma}_{0\nu}$
Total analysis efficiency I	Gaussian	0.2%	< 0.1%
Analysis efficiency II	Gaussian	0.3%	< 0.1%
Containment efficiency	Gaussian	0.2%	< 0.1%
Isotopic abundance	Gaussian	0.2%	< 0.1%
Q_{etaeta}	Gaussian	$< 0.1 \cdot 10^{-27} m yr^{-1}$	$< 0.1 \cdot 10^{-27} m yr^{-1}$
Energy bias and Resolution scaling	Multivariate	$0.2 \cdot 10^{-27} \text{ yr}^{-1}$	$0.1 \cdot 10^{-27} \text{ yr}^{-1}$

Total effect of systematics on rate is 0.8%

0vββ Search Results from One Tonne-Year of CUORE Data 37

ROI fit

Region Of Interest [2490,2575] keV

0vββ Search Results from One Tonne-Year of CUORE Data 38

Best Fit Value: Γ_{0y} = (0.9 ± 1.4) x 10⁻²⁶ yr⁻¹

m_{ββ} Limit

From the Bayesian 90% limit of $T_{1/2} > 2.2 \times 10^{25}$ yr Using a current range of NME calculations, this correspond to a limit on the neutrino effective Majorana mass of m_{BB} < (90-305) meV

Oscillation parameters from <u>NUFIT 2020</u> are used. All limits are at 90% C.L. and 3σ uncertainty is shown on the inverted and normal hierarchy bands.

The sensitivity line corresponds to the one quoted in the CUORE 2017 EPJC sensitivity paper. The limits on Ge, Mo, Se and Xe come from Gerda (2020), CUPID-Mo (2021), CUPID-0 (2019) and KamLAND-Zen (2016) respectively.

0vββ Search Results from One Tonne-Year of CUORE Data 39

SENSITIVITY

Median 90% Exclusion Sensitivity: 2.8 x 10²⁵ yr

- Sensitivity calculated by generating 10⁴ toy experiments assuming no 0vββ signal
 - Poisson-fluctuate background events and ⁶⁰Co events, with rates taken from the actual fit to data
 - Fit each toy using the same $0\nu\beta\beta$ signal + background model we use on actual data
- 72% chance of obtaining a stronger limit than our actual result

0vββ Search Results from One Tonne-Year of CUORE Data 40

Results Publication

High sensitivity neutrinoless double-beta decay search with one tonne-year of CUORE data

D. Q. Adams,¹ C. Alduino,¹ K. Alfonso,² F. T. Avignone III,¹ O. Azzolini,³ G. Bari,⁴ F. Bellini,^{5,6} G. Benato,⁷ M. Beretta,⁸ M. Biassoni,⁹ A. Branca,^{10,9} C. Brofferio,^{10,9} C. Bucci,^{7,*} J. Camilleri,¹¹ A. Caminata,¹² A. Campani,^{13,12} L. Canonica,^{14,7} X. G. Cao,¹⁵ S. Capelli,^{10,9} L. Cappelli,^{7,8,16} L. Cardani,⁶ P. Carniti,^{10,9} N. Casali,⁶ E. Celi,^{17,7} D. Chiesa,^{10,9} M. Clemenza,^{10,9} S. Copello,^{13,12} O. Cremonesi,⁹ R. J. Creswick,¹ A. D'Addabbo,^{17,7} I. Dafinei,⁶ S. Dell'Oro,^{10,9} S. Di Domizio,^{13,12} V. Dompè,^{17,7} D. Q. Fang,¹⁵ G. Fantini,^{5,6} M. Faverzani,^{10,9} E. Ferri,^{10,9} F. Ferroni,^{17,6} E. Fiorini,^{9,10} M. A. Franceschi,¹⁸ S. J. Freedman,^{16,8,†} S.H. Fu,¹⁵ B. K. Fujikawa,¹⁶ A. Giachero,^{10,9} L. Gironi,^{10,9} A. Giuliani,¹⁹ P. Gorla,⁷ C. Gotti,⁹ T. D. Gutierrez,²⁰ K. Han,²¹ E. V. Hansen,⁸ K. M. Heeger,²² R. G. Huang,⁸ H. Z. Huang,² J. Johnston,¹⁴ G. Keppel,³ Yu. G. Kolomensky,^{8,16} C. Ligi,¹⁸ L. Ma,² Y. G. Ma,¹⁵ L. Marini,^{8,16,7,17} R. H. Maruyama,²² D. Mayer,¹⁴ Y. Mei,¹⁶ N. Moggi,^{23,4} S. Morganti,⁶ T. Napolitano,¹⁸ M. Nastasi,^{10,9} J. Nikkel,²² C. Nones,²⁴ E. B. Norman,^{25,26} A. Nucciotti,^{10,9} I. Nutini,^{10,9} T. O'Donnell,¹¹ J. L. Ouellet,¹⁴ S. Pagan,²² C. E. Pagliarone,^{7,27} L. Pagnanini,^{17,7} M. Pallavicini,^{13,12} L. Pattavina,⁷ M. Pavan,^{10,9} G. Pessina,⁹ V. Pettinacci,⁶ C. Pira,³ S. Pirro,⁷ S. Pozzi,^{10,9} E. Previtali,^{10,9} A. Puiu,^{17,7} C. Rosenfeld,¹ C. Rusconi,^{1,7} M. Sakai,⁸ S. Sangiorgio,²⁵ B. Schmidt,¹⁶ N. D. Scielzo,²⁵ V. Sharma,¹¹ V. Singh,⁸ M. Sisti,⁹ D. Speller,²⁸ P.T. Surukuchi,²² L. Taffarello,²⁹ F. Terranova,^{10,9} C. Tomei,⁶ K. J. Vetter,^{8,16} M. Vignati,⁶ S. L. Wagaarachchi,^{8,16} B. S. Wang,^{25,26} B. Welliver,¹⁶ J. Wilson,¹ K. Wilson,¹ L. A. Winslow,¹⁴ S. Zimmermann,³⁰ and S. Zucchelli^{23,4} (CUORE Collaboration)

Read our publications @ https://cuore.lngs.infn.it/

0vββ Search Results from One Tonne-Year of CUORE Data 41

Comparison to Previous Result

Our last result published a 90% CI limit of T_{1/2} > 3.2 * 10²⁵ yr This was determined to be in the top igodol3% of possible expected results

Our new limit of T_{1/2} > 2.2 * 10²⁵ yr is weaker due to normal statistical fluctuations around Q_{BB} , stemming from the re-analysis and the new data

Ονββ Search Results from One Tonne-Year of CUORE Data 42

Number of Experiments

10F

Background in the ROI

α region

Fit flat background in [2650,3100] keV region Average α background: 1.40(2)·10⁻² cts/keV/kg/yr

$Q_{\beta\beta}$ region

Fit with background + ⁶⁰Co peak in [2490,2575] keV region Average BI: **1.49(4)·10⁻² cts/keV/kg/yr**

> ~90% of the background in the ROI is given by degraded alpha interactions

0vββ Search Results from One Tonne-Year of CUORE Data 43

Background budget

Background index from the the ROI fit: BI = 1.49 x 10⁻² <u>counts/keV/kg/yr</u>

CUORE background goals met

Degraded α's pose problem
Bolometric technique provides only 1 channel
No particle ID
To be solved with CUPID!

Foreseen publication of the background model in the near future

0vββ Search Results from One Tonne-Year of CUORE Data 44

CUPID: CUORE Upgrade with Particle IDentification

~1600 Li₂¹⁰⁰MoO₄ scintillating bolometers (240 kg of ¹⁰⁰Mo):

- high energy resolution (<10 keV)
- excellent radiopurity
- enrichment > 95%

Best world limit on ¹⁰⁰Mo T^{1/2}_{0V}> 1.5 10²⁴y @90% CI

CUPID

- β/γ background significantly reduced because of higher ¹⁰⁰Mo Q-value (3034 keV)
- Particle ID from scintillation to reduce α background
- β/γ versus α discrimination technique robustly demonstrated by CUPID-0 and CUPID-Mo
- Reuse proven CUORE cryogenic infrastructure @LNGS
- Expansion to 1-ton scale (CUPID-1T) technically possible

Future of CUORE

With the ultimate goal of accumulating a total of 3 tonne-years of exposure, CUORE will run until the beginning of CUPID commissioning phase.

While waiting for more data, we are performing other rare events searches and studies on our spectrum:

- $2v\beta\beta$ of ¹³⁰Te
- $0\nu\beta\beta$ and $2\nu\beta\beta$ of ¹³⁰Te on excited states of ¹³⁰Xe
- low energy analysis (dark matter, axions, supernovae neutrinos, etc)
- $0\mathbf{v}\mathbf{\beta}+\mathbf{\beta}+$, $0\mathbf{v}\mathbf{\beta}+$ EC, $0\mathbf{v}$ ECEC of ¹²⁰Te
- •••

We are also investigating the origin of our sources of noise and are working on its mitigation and decorrelation techniques:

- use of diagnostic devices (accelerometers, microphones, seismometers)
- dedicated measurements
- ...

Summary

- CUORE has now exceeded 1 tonne year of exposure and continues to stably collect data
- We observe no evidence of $0_{\nu\beta\beta}$ decay of ¹³⁰Te with an analysis of 1038.4 kg yr of data
 - Bayesian 90% CI exclusion limit: $T_{1/2} > 2.2 \times 10^{25}$ yr
 - Frequentist 90% CI exclusion limit: $T_{1/2} > 2.6 \times 10^{25}$ yr
 - Effective Majorana mass limit: m₆₆ < (90-305) meV
- This is the highest sensitivity search for $0\nu\beta\beta$ decay of ^{130}Te to date
 - Median 90% exclusion sensitivity: $T_{1/2} > 2.8 \times 10^{25}$ yr
- Look forward to other analyses from this data in the future!