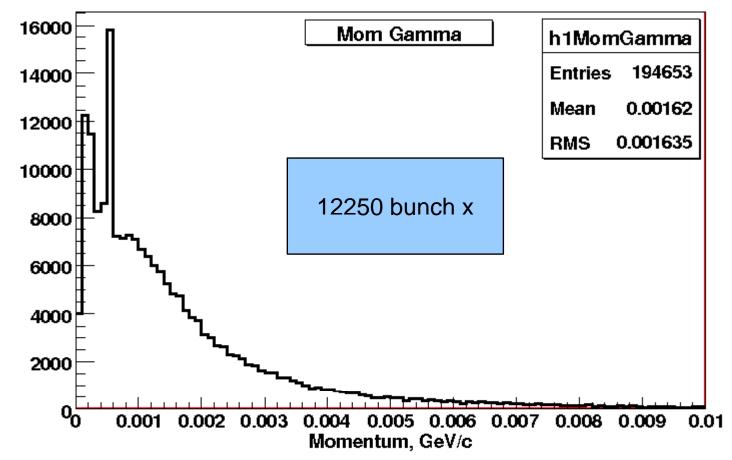
Influence of the radiative BhaBha on fTOF background

N. Arnaud, L. Burmistrov, A. Stocchi

Outlook

- → Main sources of background, **using inputs from Bruno**
- ----- Two methods to estimate the number of photo electrons (p.e.) in fTOF
- ---- Estimation of the PMT rate and collected charge

Université Paris-Sud 11, LAL-ORSAY, France


Main sources of background

In forward region:

Gammas – 87% Neutrons – 10% Electrons,positrons – 3% Protons < 0.1%

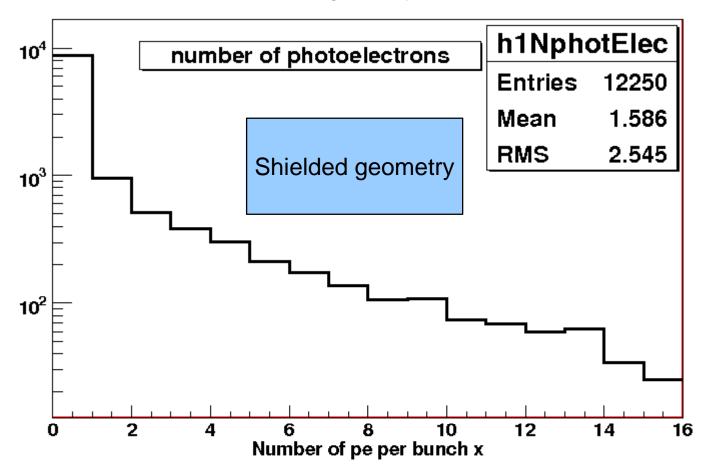
(using inputs from Bruno)

Momentum spectrum of the gammas entering fTOF envelop

~16 gammas with momentum 1.6MeV entering the fTOF envelop region per bunch x $_{5/25/2010}$

Estimating the number of photo electrons: method 1

Number of p.e. ~ No * L[cm] * sin^2 (Theta_Cherenkov)

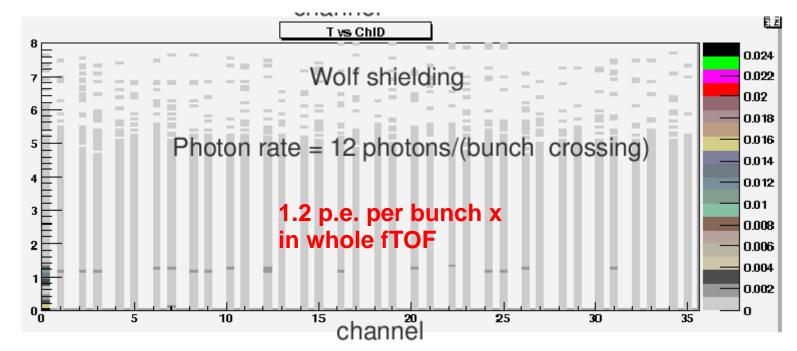

sin^2 (Theta_Cherenkov) = 1 - 1/(n²beta²)

L – given by Bruno

No = 26 (assume same performances as in BaBar)

$$1 = 1.47$$

beta – given by Bruno



Gammas, electrons, positrons are taken into account.

1.6 p.e. per bunch x in whole fTOF

Estimating the number of photo electrons: method 2

We can use output from Bruno as input in standalone simulation of the fTOF

http://agenda.infn.it/getFile.py/access?contribId=124&sessionId=19&resId=0&materialId=slides&confId=2026

Both methods give approximately the same number of p.e.

Estimation of the rate and collected charge of the PMTs

	209 MHz	 bunch x frequency 	>	1 year = 2.0 * 10 ⁷ s
>	12	sectors		Surface of one channel = 1.1 cm^2 PMT gain = 10^6
>	14	PMTs		
	4	channel/PMT		
>	Using 1.5 p.e. / event as input for the equations below			

Rate = 1.5(p.e.) * 209MHz/(14(PMTs) 12(sectors) 4(channels)) = **470 kHz / channel**

 $Charge = 1.5(p.e.) * 209MHz * 10^{6}(gain) * 2.0 * 10^{7}(sec in year) * 1.6 * 10^{-19}(electron charge)/(14(PMTs) 12(sectors) 4(channels) 1.1cm^{2}) = 1.4 C / (cm^{2} year)$