

Status of KLOE-2

Francesca Curciarello Dipartimento di Fisica Università della Calabria, Italy and INFN Laboratori Nazionali di Frascati, Italy

on behalf of the KLOE-2 collaboration

LNF Scientific Committee meeting Frascati, May 6th 2021

Publications/Ongoing Analysis

Last Publications							
Measurement of the branching fraction for the decay $K_S \rightarrow \pi \mu v$ with the KLOE detector		Physics Letters B 804 (2020)					
Upper limit on the $\eta \to \pi^+\pi^-$ branching fraction with the KLOE experiment		JHEP 10 (2020) 047					
Ongoing analyses							
T/CPT tests with $\varphi \to K_S K_L \to 3\pi^0 \ \pi ev, \ \pi\pi \ \pi ev$	KLOE data						
$K_S \to \pi^+ \pi^- \pi^0$	KL	KLOE data					
$K_S \rightarrow \pi e v$	KL	OE data					
Search for decoherence and CPTV in $K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$		KLOE data					
$K_S \rightarrow 3\pi^0$ (CP viol.)	KL	OE-2 data					
$\gamma\gamma ightarrow \pi^0$	KL	KLOE-2 data					
$e^+e^- ightarrow \omega \gamma_{\rm ISR}$	KL	KLOE data – PhD Thesis					
$\eta \rightarrow \pi^0 \gamma \gamma$ - χPT golden mode	KL	OE / KLOE-2 data					
B-boson search in $\phi \rightarrow \eta \pi^0 \gamma, \eta \rightarrow \gamma \gamma$	KL	OE/KLOE-2 data					
$e^+e^- \rightarrow (\gamma)\eta \pi^+\pi^-/\mu^+\mu^-$	KL	OE data					

Second round (final) of data reconstruction

- $\underline{L}_{int} = 3.3 \text{ fb}^{-1}$ reconstructed with the DBV-40
- Average (peak) reconstruction rate $\sim 23(30)$ pb⁻¹/day (without considering dead time)
- ROOT output production already tested, integration in the DB2 ongoing

Status of Data Reconstruction

Reconstructed Luminosity DBV-40

Recent issues:

Several hardware failures spread around KLOE Computing Center (CED) since last August/September caused several delays and difficulties to recover normal operations:

- new tape library: read/write errors
- server motherboard broken
- new disk array: cache memory burnt
- power unit broken
- old library: failure of both robotic arms

Difficult to immediately recognize these failures as clues of a common cause: **UPS malfunction not filtering voltage spikes**

The UPS unit is being replaced with a new one.

We thank the LNF staff for all the support received

The remaining stops in December and first half of January are mainly due to fixing a minor issue in DBV-40 affecting the filtering of the downscaled minimum bias sample.

No impact on already reconstructed data.

MC status

Simulation	DBV Version	MC Version	LSF	Luminosity (pb ⁻¹)	
$\varphi \rightarrow all$	38	201	1.00	3703	
$K_{\!S} \to 3\pi^{\!o}$	38	201	$1.*10^{6}$	2032	
$e^+e^- \rightarrow e^+e^-$	38	201	0.01	353	
$e^+e^- \to \gamma\gamma$	38	201	1.00	23	
$\varphi \rightarrow all$	39	210	1.00	110	
$e^+e^- \rightarrow e^+e^-$	39	210	0.01	85	
$\varphi \to K_{S}K_{L}$	39	210	1.00	28	
$e^+e^- \rightarrow e^+e^-$	39	210	1.00	25	
$K_{_S} \to \pi^{_{\scriptscriptstyle T}} \pi^{_{\scriptscriptstyle T}} \pi^{_{\scriptscriptstyle O}}$	26	174	1.*104	1702	

- <u>Massive MC production available with DBV-38</u>
- Reconstruction rate ~15 pb-1/day (performed in parallel, but by allocating most of the computing power to the data reconstruction)
- Sample produced with DBV-39 to study the final refinements to insert in the DBV-40 \rightarrow large scale production with MC DBV-40 will start soon
- Simultaneous MC production of signal for specific ongoing KLOE analysis

MC status

MC simulation for KLOE-2 data used in analysis ($K_S \rightarrow 3\pi^0$)

NICE AGREEMENT BETWEEN DATA AND MC

Data consolidation and recovery strategy plan

Status of Data Migration

The data migration will be the last architectural change, then KLOE CED will reach the project design and the best efficiency condition ever for our computing **Search for decoherence and CPTV in** $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

1.2

0.8

0,6

D.4

Q.2

ζ₀₀ >0

 $\zeta_{00} = 0$

 $I(\Delta t)$

Most precise test of quantum coherence in an entangled system.

$$\begin{split} \mathcal{I}\left(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t\right) &= \frac{N}{2} \left[\left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \left| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \left| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right\rangle \right|^{2} \\ &- \left(1 - \zeta_{0\overline{0}}\right) \cdot 2\Re \left(\left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \left| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \left| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right\rangle^{*} \right) \right] \end{split}$$

 ζ_{00} decoherence parameter in the $K^0 \overline{K}^0$ basis (QM predicts: $\zeta_{00} = 0$) [or ζ_{SL} in the $K_S K_L$ basis]. $\Delta t/\tau_s$

Search for decoherence and CPTV in \phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-

Decoherence effects might arise in a quantum gravity picture necessarily entailing CPT violation [Ellis et. al, NP B241 (1984) 381; Ellis, Mavromatos et al. PRD53 (1996)3846]:

- In this case the relevant parameter in the modified time evolution of neutral kaons is the γ parameter (at most $\gamma = O(m_K^2 / M_{planck}) \approx 2x 10^{-20}$ GeV).
- the initial entangled state is modified adding a tiny symmetric part $\rightarrow \omega$ effect (at most $\omega = O(m_K^2 / M_{planck} / \Delta \Gamma) \sim 1x 10^{-3}$)

$$|i\rangle \propto \frac{1}{\sqrt{2}} \left[|\mathbf{K}^{0}\rangle |\bar{\mathbf{K}}^{0}\rangle - |\bar{\mathbf{K}}^{0}\rangle |\mathbf{K}^{0}\rangle \right] + \omega \left[|\mathbf{K}^{0}\rangle |\bar{\mathbf{K}}^{0}\rangle + |\bar{\mathbf{K}}^{0}\rangle |\mathbf{K}^{0}\rangle \right] \longrightarrow [\text{in the } K^{0}\overline{K}^{0} \text{ basis}]$$

$$[\text{in the } K_{S}K_{L} \text{ basis}] \longleftarrow |i\rangle \propto \left[|K_{S}\rangle |K_{L}\rangle - |K_{L}\rangle |K_{S}\rangle \right] + \omega \left[|K_{S}\rangle |K_{S}\rangle - |K_{L}\rangle |K_{L}\rangle \right]$$

$$\overset{\zeta_{SL}}{=} (1.8 \pm 4.0 \pm 0.7) \cdot 10^{-2}}{\zeta_{00} = (1.0 \pm 2.1 \pm 0.4) \cdot 10^{-6}}$$

$$\gamma = (1.3 \pm \frac{2.8}{1.4} \pm 0.4) \cdot 10^{-21} \text{ GeV}$$

$$\Re(\omega) = (1.1 \pm \frac{8.7}{5.0} \pm 0.6) \cdot 10^{-4}}$$

Search for decoherence and CPTV in $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Search for decoherence and CPTV in $\phi \rightarrow K_{S} K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

Systematic table, preliminary

-	$\delta\zeta_{SL} \ \cdot 10^2$	$\delta \zeta_{00} \ \cdot 10^7$	$\delta \gamma \ \cdot 10^{21} GeV$	$\delta Re \omega \cdot 10^4$	δΙmω · 10 ⁴	$\delta \omega \ \cdot 10^4$
Cut stability	±0.70	±3.6	±0.41	±0.66	±0.64	±0.81
4π Background	±0.32	±1.7	±0.18	±0.30	±0.19	±0.30
Regeneratio n	±0.18	±1.0	±0.10	±0.18	±0.75	±0.76
Resolution	±0.17	±0.9	±0.10	±0.15	± 0.08	± 0.14
Phys. Const.	±0.04	±0.2	±0.02	±0.02	± 0.07	± 0.08
Total	±0.81	±4.2	±0.47	±0.76	±1.01	±1.16

 $3\pi^0$ is a pure CP=-1 state; observation of $K_S \rightarrow 3\pi^0$ is an unambiguous sign of CP violation in mixing and/or in decay. Standard Model prediction: $BR(K_S \rightarrow 3\pi^0) = 1.9 \cdot 10^{-9}$ PLB 723 (2013) 54

Best upper limit by KLOE with 1.7 fb⁻¹

BR(K_S
$$\rightarrow 3\pi^0$$
) < 2.6 × 10⁻⁸ @ 90% CL

- * <u>Analysed data:</u>
 - ✤ In total ~4 fb⁻¹, DBV38

✤ <u>MC simulations:</u>

- ★ K_S →3 π^0 signal: ~1.7 fb⁻¹, DBV38, LSF = 10⁶
- ✤ All Backgrounds: in total ~4 fb⁻¹, DBV38, LSF=1
- Preselection with the following requirements:
- K_L-crash: E>150 MeV, $0.2 \le \beta \le 0.225$
- prompt photons: $E_{cl} > 20$ MeV; $|\cos \theta_{cl}| \le 0.915$ and $|\Delta T_{cl}| \le Min(3.0 \cdot \sigma_T(E_{cl}), 2 \text{ ns})$
- ★ K_S →2 π^0 (4 prompt photons) used for normalization
- ★ Main background source: K_S → 2π⁰ with two additional clusters (shower splitting/accidentals)
- New discriminant variables to reject machine background

Search for the CP violating $K_S \rightarrow \pi^0 \pi^0 \pi^0$ decay

$$E_{t} = \sum_{i=1}^{6} E_{\gamma i} / 6$$

$$P_{t} = \sum_{i=1}^{6} \frac{E_{\gamma i}}{E_{t}} \sqrt{(P_{xi})^{2} + (P_{yi})^{2}};$$

$$R_{t} = \sum_{i=1}^{6} \frac{E_{\gamma i}}{E_{t}} \sqrt{(R_{xi})^{2} + (R_{yi})^{2}}$$

Photon coincidence time:
$$\Delta t = t_{cl}^{max} - t_{cl}^{min}$$

❑ At the end of the analysis we count 0 candidates in the background simulations (upper limit corresponding to the last published result (PLB 723 (2013) 54).

Cuts optimization procedure is in progress

γγ physics with High Energy Tagger (HET)

Rev. Mod. Phys., 85 (2013) 49

- Precision measurement of $\Gamma(\pi^0 \rightarrow \gamma \gamma)$
- Transition form factor $F_{\pi\gamma\gamma}(q^2,0)$ at space-like q^2 ($|q^2| < 0.1 \text{ GeV}^2$), impact on value and precision of $a_{\mu}^{LbyL;\pi0}$

First bending dipoles of DA Φ NE act as spectrometers for scattered leptons ($420 \le E \le 495 \text{ MeV}$)

Scintillator hodoscope + PMTs, inserted in Roman pots pitch: 5 mm, ~11 m from IP (σ_E ~2.5 MeV σ_t ~500 ps)

HET is acquired asynchronously w.r.t. the KLOE-2 DAQ (Xilinx Virtex 5 - FPGA),synchronization with the "Fiducial» signal from DAΦNE (each 325 ns)and the KLOE trigger

HET acquisition window corresponds to about 2.5 DA Φ NE revolutions, data are recorded only when a KLOE trigger is asserted

The analysis is based on the HET-KLOE coincidences and the accidental-pure samples used for background modelling (shape and number)

Status of $\gamma\gamma \rightarrow \pi^0$ Search

Events / (13.3333)

The reconstruction of 3 fb⁻¹ of good-quality data has been completed (2015-16-17-18 data-taking periods)

Single-arm selection:

-Sample of 2 clusters associated with the same bunch crossing the KLOE barrel calorimeter

-Selected bunch crossing, and, independently selected HET signal, are in a time window of 40 ns around the KLOE trigger

Analysis Strategy:

-Simultaneous fits of A+/A samples in $M_{\gamma\gamma}\Delta T_{\gamma\gamma}\Delta R_{\gamma\gamma}/c$, $\cos\theta_{\gamma\gamma}$. -Fit to accidental-pure samples used to constrain the number of accidentals in A+

-Time coincidence window : 4 bunch crossings

-Accidental pure sample (A) used to model background pdf

-Signal pdfs by Ekhara simulation, control samples and BDSIM transport of the leptons through the beam line. Acceptance extracted using low angle raditive Bhabha cross section measurements, in progress

 $-M_{\gamma\gamma}$, $\cos\theta_{\gamma\gamma}$ with a signal-enriching cut ($\Delta T_{\gamma\gamma}$ - $\Delta R_{\gamma\gamma}/c < 0.3$ ns) separately fitted. Signal fraction (0.55) fixed from signal simulation

-Pz vs plastic position (xHET) correlation included in the fits for 2017-18 data, checks of simultated signal and fit results ongoing

8% precision on signal reached with ~ 1.5 fb⁻¹ (2017-18 data), very preliminary, results under check

Status of $\gamma\gamma \rightarrow \pi^0$ Search: Pz, xHET correlation included

- Simulataneous fit of bidimensional Pz-xHET distribution included in the analysis for 2017-18 sample
- Acceptance per channel measured with low angle radiative Bhabha in the HET for all data-taking periods

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$

- 3π channel encounters the second largest contribution on a_{μ}^{HVP} at the leading order, both in absolute values and uncertainties.
- Cross section measurement of $e^+e^- \rightarrow 3\pi$ is feasible using ISR technique with fewer energy points at KLOE
- Improve lack of ISR data samples in low energy region, complementary results to direct energy scans
- Analysis ongoing on ~ 1.72 fb⁻¹ on-peak and ~ 246 pb⁻¹ off-peak data samples.

Physics goals:

-to extract the peak cross section of the process $e^+e^- \rightarrow V \rightarrow 3\pi$, involving vector resonances $V = \varphi, \omega$ -to measure cross section of non-resonant process $e^+e^- \rightarrow \gamma^* \rightarrow 3\pi$. -to measure product of branching fractions $B(\omega \rightarrow e^+e^-) \ge B(\omega \rightarrow 3\pi)$

Sample statistics: about 1.7 fb-1

Event selection:

- $K_S K_L$ stream
- at least two tracks with opposite curvature
- three neutral clusters with $|\cos\theta| < 0.92$, Eclu >15 MeV, Tclu-Rclu/c < min (2,5 σ_t) ns
- Two tracks with opposite curvature extrapolated inside a cylinder with $\rho = \sqrt{x^2 + y^2} < 4 \text{ cm and } |z| < 10 \text{ cm}$

Additional selections:

-Kinematic fit with seven constraints $\chi^2_{7C} < 26$ rejects Kaons - $\theta_{\gamma\gamma} < 140^\circ$ to reject Bhabha events -M > 300 MeV to reject $\rho\pi$ events with M from $\sqrt{s} - \sqrt{M^2 + p_+^2} - \sqrt{M^2 + p_-^2} - |\bar{p}_{\phi} - \bar{p}_+ - \bar{p}_-| = 0$ $\beta_{\pi} < f_{\beta} (M_{2\pi})$ to reject further backgrounds with:

$$f_{\beta} = 1.98 + \frac{1}{1 - \exp\left(\frac{M_{2\pi} - 0.8}{0.11}\right)}$$

Cross section extraction in the omega region in progress:

Preliminary fit obtained with a simple BW model, refinement of the model in progress

KLOE preliminary results

Analysis of systematic uncertianty ongoing

• Dark Force mediator coupled to baryon number (B-boson) with the same quantum numbers of the $\omega(782) \Rightarrow I^{G}=0^{-1}$

$$\mathcal{L} = rac{1}{3} \mathbf{g_B} \mathbf{ar{q}} \gamma^\mu \mathbf{q} \mathbf{B}_\mu ~~ lpha_\mathbf{B} = rac{\mathbf{g_B^2}}{4\pi} \lesssim \mathbf{10^{-5}} imes (\mathbf{m_B}/\mathbf{100 MeV})$$

• Dominant decay channel ($m_B < 600 \text{ MeV}$): $B \rightarrow \pi^0 \gamma$

Search for the B boson

Study on ~1.7 fb⁻¹ full data sample Selection of 5 prompt γ 's Kinematic fit Main residual background from $\Phi \rightarrow a0\gamma \rightarrow \eta \pi^0 \gamma$ and $\Phi \rightarrow \eta \gamma \rightarrow 3\pi^0 \gamma$ with lost or merged photons.

Sidebands background extraction for Upper Limit calculation refined and detailed calculation based on CLs technique

Systematic uncertainties due to irreducible background estimation (below 2% over the invariant mass range of the B boson) included in the limit extraction procedure

Search for the B boson

Study on ~1.7 fb⁻¹ full data sample Selection of 5 prompt γ 's Kinematic fit Main residual background from $\Phi \rightarrow a0\gamma \rightarrow \eta\pi^0\gamma$ and $\Phi \rightarrow \eta\gamma \rightarrow 3\pi^0\gamma$ with lost or merged photons.

Sidebands background extraction for Upper Limit calculation refined and detailed calculation based on CLs technique

Systematic uncertainties due to irreducible background estimation (below 2% over the invariant mass range of the B boson) included in the limit extraction procedure

Several analyses, ongoing both with KLOE and KLOE-2 data-sets, are very advanced. Main goals for the end of the year: submit two papers ($K_SK_L \rightarrow \pi^+\pi^- \pi^+\pi^-$, T/CPT tests) and three final results ready for publication (B boson limit, $\eta \rightarrow \pi^0\gamma\gamma$, BR(K_se3)).

KLOE-2 data reconstruction with final DBV version in good progress, about 3.3 fb⁻¹ produced, almost two years of data taking completed

The problem of repeated hardware failures in the KLOE computing center is being solved with the installation of a new UPS unit replacing the old one.

ROOT output implemented and tested, integration on DB2 ongoing

Massive MC production available with DBV-38 used in KLOE-2 analyses, large scale production with final DBV version will start soon

Observations:

- KLOE reported significant progress to the SC. The reconstruction of the data events using the last version (DBV-40) has progressed well. By now 2.4/fb have been reconstructed and it is expected that the reprocessing of the data will finish in February if no unexpected delays occur. MC production has continued with DBV-38 but is now close to starting also for DBV-40. The migration of the file system to GPFS was done successfully and the tape storage available is sufficient to keep both data and MC in versions DBV-40 and DBV-38 concurrently.
- In terms of data analysis, two papers have been published and on many other analyses progress was made. For instance, it now looks promising that for the novel HET γγ→π⁰ a precision of 6% is in reach. For the first time clear signals of φ→ηππ and φ→ημμ are observed, enabling a first branching ratio measurement in these modes. Another interesting new result soon to be released is a search for quantum decoherence in K_sK_L events with 4x higher statistics than before. And there are several measurements that test discrete symmetries: CP, T or CPT. In total 12 analyses are in progress, but in many cases the analyses rely on a single person who cannot work on the analysis full-time. Additional manpower, e.g. talented master/laurea students, would be very welcome to help ensure that the data will be published.