

The Large Hadron Collider

The Large Hadron Collider

The CMS experiment

- Silicon tracker:
 - Pixel & Strip
- Electromagnetic calorimeter (ECAL)
 - PbWO₄ crystal
- Hadronic calorimeter (HCAL)
- Superconducting solenoid
 - -B = 3.8T
- Muon chambers

The CMS experiment

Particle Flow

Pileup

Pileup

- Pileup mitigation:
 - Removal of charged particles originated from the pileup interaction;
 - Reduced weight for neutral particles which are "close" to the charged pileup particles (PUPPI).

Missing transverse energy resolution

Trigger and data acquisition

- Hardware trigger (L1): 40 MHz → 100 kHz
 - simplified readout (**no tracker**), small latency.
- Software trigger (HLT): 100 kHz → ~1 kHz.
 - full event readout available (~1MB/event);
 - simplified reco: ~30k CPUs → 300ms/event on average.

Unconventional data taking

- Trigger limit at 1 kHz because of prompt offline reconstruction & available space on disk/tape.
- We go beyond the 1-kHz limit in two ways:
 - "data parking" → offline reconstruction is delayed.
 - "data scouting" → saving only the objects reco'd at trigger level
 - no offline reconstruction;
 - smaller event size
 (~1 MB → few kBs).

Trigger	Threshold sum jet $p_{_{\rm T}}$	Peak rate
"Normal" (offline reco)	> 1050 GeV	~ 10 Hz
Scouting (PF objects)	> 410 GeV	~800 Hz
Scouting (only jets)	> 250 GeV	~3000 Hz

Data parking

- In 2018, CMS collected **10 billions** of events with **unbiased B hadron** decays,
 - Triggered by the displaced muon from another B hadron decay.
- Data analyses are ongoing...

Run-3

Upgrade for Run-3

- Several upgrades anticipated to 2017.
- Pixel detector:
 - replacement of the innermost layer (250 fb-1);
 - replacement of the DCDC converters.
- HCal: Hybrid photo diode → SiPM
 - lower noise, increase of the longitudinal segmentation (from 1 to 4 in the barrel)
- Installation of new muon detectors (gas electron multiplier (GEM)).

HCAL

HCAL - HB

Precision Proton Spectrometer (PPS)

- TOTEM experiment integrated in CMS:
 - allows CMS to detect pp → X + pp (intact protons!),
 - longitudinal initial state momentum is known.
 - located ~200m from the interaction point;
 - LHC magnets used to measure the proton momentum;
 - very close to the beam line (~1 mm).

Precision Proton Spectrometer (PPS)

- **Tracking** detector (3D pixels) → proton momentum:
 - resolution goal: $10 30 \mu m$,
 - step motor → reduction of radiation damage.
- **Timing** detector (diamond) → primary vertex position:
 - resolution goal: 20 30 ps.
- Fully ready in Run-3, partially tested in Run-2.

INFN Graphics Processing Unit (GPU)

- GPUs very powerful in parallel computing,
 - exponential increase!
- Increasing usage in High Energy Physics
 - especially for Machine Learning.
- CMS will use GPUs in the trigger software starting from Run 3.
- Big effort in porting Pixel, HCAL, ECAL code on GPU (CUDA);
 - first step towards an **heterogeneous** era.

Nvidia and AMD (which acquired ATI in 2006) are the only two makers of graphics processing units (GPUs

Software trigger and GPU

CPU: 2x Intel Skylake Gold 6130 with HT enabled (16 processes)

GPU: NVIDIA T4

Run-3 data taking

- The Run-3 luminosity will be similar to Run-2.
- The improvements (detectors, trigger, reconstruction, new ideas ...) will allow to look for new physics in new ways.
 - Brainstorming ongoing
 (eg. GPU+scouting, new parking, ...)
- Search for new signatures:
 - Example: long-lived particles.

Upgrade for High Luminosity LHC

Upgrade for HL LHC

New silicon tracker

Extended coverage |η|<3.8. Track trigger at 40 MHz. Reduced material budget. Increased granularity.

Barrel calorimeter

ECAL crystal granularity readout at 40 MHz. Precision timing for e/ γ at 30 GeV for vertex localization (H $\rightarrow \gamma\gamma$). ECAL and HCAL new Back-End boards.

New endcap calorimeter

(high-granularity calorimeter)
3D showers imaging for pattern recognition
Precision timing for PU mitigation
Si, Scint+SiPM in Pb/W-SS

Muon chambers

Extended coverage to $|\eta|$ <3 New readout New detectors (GEM)

New MIP Timing Detector

Precision timing for PU mitigation Barrel: LYSO crystals + SiPMs Endcap : Low Gain Aval. Diodes

Endcap calorimeter

- Acceptance: 1.5<|η|<3.0.
- Sensors:
 620 m² silicon + 400 m² scint.
- Channels:
 6M silicon + 400k scintillator.

MIP Timing Detector

Particle identification: pion vs kaon up to ~3 GeV

Arrival time vs momentum

4D tracking: better performance, better vertexing, search for new physics signature

Muon iso efficiency vs pileup

B-tag efficiency vs pileup

Trigger

- Hardware trigger rate: 750 kHz
 - Tracks from the outer tracker,
 - Particle Flow and PUPPI,
 - Scouting at 40 MHz!
- Software trigger rate: **7.5 kHz**

Tracker

- Three modules:
 - Pixel (25×100 μm² or 50×50 μm²)
 - Pixel-Strip (PS, 1.5 mm \times 100 μ m)
 - Strip-Strip (2S, 5 cm \times 90 μ m)
- C0₂ cooling system: -35C.

Tracker activities in Pisa

- Outer tracker (PS modules):
 - Study about thermal contact between modules and CO₂.
 - Module burn-in at -35C.
 - Integration of the PS modules in the wheels.
 - Production and test the boards for DAQ & trigger.
- Inner tracker:
 - Mechanical design.
 - 3D sensor studies.

Conclusions

- Many physics results based on **Run-2** data are in progress (eg. using B parking dataset).
- Important improvements are expected in **Run 3** (upgrades, PPS, GPU, new ideas...)
 - on top of the larger integrated luminosity (190fb⁻¹ → 350fb⁻¹).
- Many big upgrades are expected for HighLumi-LHC:
 - New detectors, new reconstruction (eg. timing detector)
 - Big jump in integrated luminosity (350b⁻¹ → ~4000fb⁻¹).
- Important contribution of **Pisa** to the Tracker upgrade.