Design and Studying Physical Properties of Cavity Beam Position Monitors for Electron Accelerators

DIPARTIMENTO DI FISICA FISICA DEGLI ACCELERATORI

Candidate: Advisor: Tutor: Shalva Bilanishvili Massimo Ferrario Andrea Mostacci

Outline

- Introduction
- EuPRAXIA@SPARC_LAB project and it's requirements.
- Cavity BPM design process and strategy.
- Working principle and theory of Cavity Beam Position Monitors.
- Geometrical parameters for the monitor.
- Waveguide to coaxial transition.
- Proposal of cBPM prototype with one resonator.
- Dual-Resonator cBPM prototype.
- Sensitivity and theoretical resolution for dual-resonator cBPM.
- Mechanical implementation.
- Conclusions and Outlook.

Introduction

- We have designed a Cavity Beam Position Monitor for the EuPRAXIA@SPARC_LAB project.
- A particular set of parameters for the prototype were determined in order to fulfil the EuPRAXIA@SPARC_LAB requirements.
- Based on this set, simulations were performed with ANSYS HFSS for frequency domain calculations, using the wire technique, and CST for simulating the passing particle beam, to verify the goodness of the designs layout and optimise them.
- Sensitivity to the possible fabrication errors and performance degradation of the prototype have been studied.
- Theoretical resolution of the device was approximated with the upper limit for additional contribution in noise due to the mechanical tolerances.
- Mechanical implementation, based on the new clamping method, developed at LNF INFN, is proposed.
- Foreseen future tests.

EuPRAXIA@SPARC_LAB project and it's requirements

The layout of the EuPRAXIA@SPARC_LAB infrastructure.

The control of the charge and the trajectory at a few pC and few μ m is mandatory in this machine, especially in the plasma interaction region. However, other kind of BPMs, such as stripline BPM, can be used only at the beginning of the accelerator, where the beam pipe is 40 mm. But starting from X band structures, the pipe size decreases. Also, one of the most important parameter was considered to be the length of the device.

EuPRAXIA@SPARC_LAB project beam specifications.

Parameter	Units	Full rf	LWFA	PWFA
Electron energy	${ m GeV}$	1	1	1
Repetition rate	Hz	10	10	10
RMS Energy Spread	%	0.05	2.3	1.1
Peak Current	kA	1.79	2.26	2.0
Bunch charge	m pC	200	30	200(D)-30(W)
RMS Bunch Length	$\mu \mathrm{m}\mathrm{(fs)}$	$16.7 \ (55.6)$	2.14(7.1)	3.82(12.7)
RMS normalized Emittance	mm mrad	0.05	0.47	1.1
Slice Length	$\mu{ m m}$	1.66	0.5	1.2
Slice Charge	\mathbf{pC}	6.67	18.7	8
Slice Energy Spread	%	0.02	0.015	0.034
Slice normalized Emittance (x/y)	mm mrad	0.35/0.24	0.45/0.465	0.57/0.615
Undulator Period	mm	15	15	15
Undulator Strength $K(a_w)$		0.978~(0.7)	1.13(0.8)	1.13(0.8)
Undulator Length	m	30	30	30
ho (1D/3D)	$\times 10^{-3}$	1.55/1.38	2/1.68	2.5/1.8
Radiation Wavelength	nm (keV)	2.87(0.43)	2.8(0.44)	2.98(0.42)
Photon Energy	$\mu { m J}$	177	40	6.5
Photon per pulse	$\times 10^{10}$	255	43	10
Photon Bandwidth	%	0.46	0.4	0.9
Photon RMS Transverse Size	$\mu\mathrm{m}$	200	145	10
Photon Brilliance per shot	(s mm2 mrad2 bw(0.1%)) $^{-1}$	1.4×10^{27}	$1.7{\times}10^{27}$	0.8×10^{27}

EuPRAXIA@SPARC_LAB's beam parameters for plasma and conventional RF linac driven FEL.

Sketch of dual-resonator cBPM

Parameters	Values
Working frequency range	C band
Loaded quality factor Q_L	≈ 500
Sensitivity	$\approx 5 \text{ V/nC/mm}$
Required resolution	$< 1 \mu m$

Sketch of single-resonator cBPM

Sensitivty of the device should be of the order of 5 V/nC/mm in order to provide <1 μ m resolution.

Cavity BPM design process and strategy

Working principle and theory of Cavity Beam Position Monitors.

Geometrical parameters for the monitor.

Transit time factor for the monopole and dipole modes of a pillbox cavity with different lengths. Dependence of the shunt impedance on the cavity length.

The width of waveguide (a) has to be chosen such, that its cut-off frequency is located between TM_010 and TM_110 cavity modes.

1.4

The monopole signal is exponentially decaying along the waveguide, therefore, it is better to have minimal height (b) (compromise has to be found between height and coaxial output transmission quality).

The length (c) has to be chosen in order to eliminate reflections.

Sh.Bilanishvili

Waveguide to coaxial transition.

Different types of coupling were simulated for waveguide to coaxial transition substructure.

Dimmension	Value[mm]	
	Inductive coupling	Capacitive coupling
Waveguide Length l $_{WG}$	33	33
Waveguide Width w $_{WG}$	48	48
Waveguide Height h $_{WG}$	8	8
Coaxial Position x	9.63	23.41(2)
Coaxial Position z	9.63	17.3
Bead Height h $_{bead}$	-	1.2
Antenna Curvature Radius R_{curve}	0.5	0.5
Whip and Bead Radius	0.635	1.3
Spacing between Antenna and Waveguide Wall \boldsymbol{s}	0.21(8)	0.7

Dimension values for the inductive and capacitive couplings for 6.1 GHz.

Exposition of how sufficient transition is achieved between the waveguide and coaxial antenna by changing the x and z parameters.

Reflection coefficients for waveguide to coaxial transition.

dB S(1,1) parameter dependence on the spacing variation between the antenna end and waveguide wall for inductive coupling.

Different coupling methods were studied, using the whip antenna for inductive coupling and preforming capacitive coupling by whip antenna with a flat bead at the end of the inner conductor. In the capacitive coupling case, we have a little more freedom in terms of distance from the waveguide wall, Since the capacitance between two flat surfaces is proportional to their area and inversely proportional to their separation. Increasing the area of the bead should allow for a larger spacing between it and the waveguide wall.

dB S(1,1) parameter dependence on the spacing variation of the bead end and waveguide wall.

Proposal of cBPM protorype with one resonator.

Sh.Bilanishvili

cBPM with one resonator studying mechanical tolerances

cBPM with one resonator RF and dimension values

A general sketch and indications of the dimensions for the cBPM prototype only with one resonator.

Parameter		Numerical
		calculation
	TM_{010} as reference	TM_{110}
$f_{ m GHz}$	4.18	6.100
Q_0	2631	3075
Q_L	657	877
Damping time, τ ns	34.3	44.5
$\frac{R}{Q}$,Ohm	42	0.49
\tilde{V}_{out}	21 V/nC	$3.02 \ V/nC/mm$
Theoretical resolution	—	326 nm

The main characteristics of the one resonator cBPM prototype.

Sh.Bilanishvili

Dimmension	Value[mm]
Position Cavity Radius R	27.71
Position Cavity Length L	8
Waveguide Length WG _{length}	33
Waveguide Width WG width	48
Waveguide Height WG height	8
Coaxial Position x	9.58
Coaxial Position z	17.6
Separation of Monopole Coaxial Port d	2.4
Trench Length T	5
Trench Height h	1
Slot Length Slot length	14
Slot Width Slot width	1.5
Slot Height Slot height	1
Slot Curvature Radius r_{slot}	0.75
Cavity Edge Curvatures $r_{curvature}$	0.2
Beampipe Radius R_{pipe}	7.5

Dimension values for the one resonator prototype cavity BPM

Dimmension	Q_0 Variation	Frequency shift
	[%/mm]	$[\mathrm{MHz}/\mathrm{mm}]$
Cavity Radius R	2	-218
Cavity Length L	3	-33.9
Waveguide Length WG _{length}	-2.3	-0.2
Waveguide Width WG width	-3.81	-0.3
Waveguide Height WG _{height}	-6.93	-0.6
Separation Coaxial Port d	20	1.6
Spacing s	8	0.1

Dimension tolerances to the 1mm change for the one resonator prototype.

Waveguide to coaxial transition for dual-resonator cBPM.

dB S(1,1) parameter for 5.1 GHz waveguide to coaxial transition for the direct coupling with whip antenna.

Mag S(1,2) parameter for 5.1 GHz waveguide to coaxial transition for the direct coupling case.

dB S(1,1) parameter for 5.1 GHz waveguide to coaxial transition for the inductive coupling with whip antenna.

dB S(1,1) parameter for 5.1 GHz waveguide to coaxial transition for the capacitive coupling.

Dimmension	 Value/mm			
Diminension	Direct Inductive Capa		Capacitive	
	coupling	$\operatorname{coupling}$	$\operatorname{coupling}$	
Whip Antenna Raduis	0.635	0.635	0.635	
Bead Radius	—	—	1.8	
Bead Height h $_{bead}$	_	_	1.2	
Curvature Radius R $_{curve}$	—	0.5	0.2	
Spacing s	0	0.151	1.969	
Distance from the short-end z	19.5	58.8	21.74	
Distance from the wall x	25	18.5	12.2	
Waveguide height h wq	3	8	6	
Waveguide height w $_{wq}$	39	37	37	
Waveguide height l $_{wg}$	57	90	57	

Simulting position cavity with wire for dual-resonator cBPM.

Simulting position cavity with wire for dual-resonator cBPM.

Optimizing position cavity length for dual-resonator cBPM.

Output voltage V_{out} dependence on the position cavity length variation.

After the prototype conceptual design was obtained, separate parts still need to be tuned to match the required properties and deliver optimal performance. However, the cavity beam position monitor can be considered as a system, where one component/dimension variation causes changes to other parameters, one can still divide the whole system into separate parts and start the design process to unite them in one particular layout then.

To determine the optimum position cavity length, which will provide sufficient output voltage for the required spatial resolution, corresponding simulation and long enough decay time τ , the output voltage dependence on the position cavity length with quality factor was set up.

Optimizing WG and **X**, **Z** dimensions for Dual-Resonator cBPM.

Position cavity's dimensional values and tolerances.

The 5.1 GHz prototype position cavity's optimised design.

Dimmension	Value[mm]
Position Cavity Radius R	34.07
Position Cavity Length L	5
Waveguide Length WG length	21.57
Waveguide Width WG width	22.6
Waveguide Height WG height	3
Coaxial Position x	6.3
Coaxial Position z	7

Dimension values for the 5.1GHz prototype position cavity.

3.0458E+12 1.0569E+12 3.0953E+11 9.0650E+10		Dimmension	Q_0 Variation	Frequency shift
2.6548E+10 7.7750E+09 2.2770E+09 6.6688E+08	A STATE		$[\%/\mathrm{mm}]$	$[\mathrm{MHz}/\mathrm{mm}]$
1.9530E+08 5.7196E+07 1.6751E+07		Position Cavity Radius R	1	137.77
1.4367E+06		Position Cavity Length L	12	-28.06
4.6353E+08 4.3263E+08	the second of th	Waveguide Length WG length	-5	-4.2
4.0173E+08 3.7082E+08 3.3992E+08 3.0992E+08		Waveguide Width WG width	-0.87	-0.12
2.7812E+08 2.4722E+08 2.1631E+08	• • • • • • • • • • • • •	Coaxial Position x	13	-0.48
1.8541E+08 1.5451E+08 1.2361E+08 9.2706E+07		Coaxial Position z	9	0.45
6.1894E+07 3.0902E+07 3.8243E+00				
		Dimension tolerances to the 1	mm change for 1	the 5.1GHz

prototype position cavity.

Poynting [W/n^2] 1.4367E+14 4.2076E+13 1.2323E+13

Reference cavity's dimensional values and tolerances.

Dimmension	Value	Deviation,	Q variation
		[MHz/1 mm]	$[\%/\mathrm{mm}]$
Reference Cavity Radius R	22.71	-221	5.6
Reference Cavity Length L	9	25.43	20
Trench Radius r	21.71	-315.38	-26
Reference Cacity Effective Length G	4	-175	-22
Distance between cavity wall and coaxial coupler D	2.6	3.5	-30

Dimensions and tolerances to 1 mm change for the 5.1GHz prototype reference cavity.

Output voltage signal coming out from the reference cavity with a 1 mm beam offset. Wakefield simulation.

Schematic view of reference cavity with geometrical indications.

It consists of a particular pillbox where the antenna is inserted in the bulge. In general, the insertion depth of the antenna in the bulge determines the desired output signal level. In particular, the closer the antenna end is to the cavity wall, the higher the output signal amplitude becomes.

Dual-Resonator cBPM full object analyze

Cavity BPM pickup schematic view (shown: vacuum).

Cavity BPM pickup half-cut schematic view (shown: copper shell).

Output voltage signal coming out of one of the coaxial ports for position cavity.

1.5

Sensitivity and mechanical tolerances of the monitor.

Sensitivity and theoretical res. for dual-resonator cBPM.

Mechanical implementation.

3

R1,5

B-B(1:1)

clamping method.

Assembled prototype.

Sh.Bilanishvili

April 28 2021

Outlook

Once the first prototypes will be fabricated, bench-top measurements and beam tests will be performed. Such a new test-bench for cBPMs at SPARC-LAB at INFN-LNF was designed and will be used in the prototype tests.

The test bench aims to perform measurements on the manufactured cBPMs. The main reason for these is to investigate further the prototype presented in this dissertation and their properties, dealing with the new challenges related to beam diagnostics for the EuPRAXIA.

Conclusions

- Cavity BPM **design process** and **strategy** for achieving the required specifications is described.
- Cavity beam position monitor prototype with single resonator is proposed as a possible solution, when the longitudinal dimension of the device has a critical importance.
- Dual-resonator cavity BPM prototype is proposed that is simpler from the mechanical point of view and has looser mechanical tolerances.
- Sensitivity and theoretical resolution for developed cBPM are evaluated.
- Future tests, once the monitor is manufactured, are determined.

Thank you!

References

[1] M. Ferrario - "EuPRAXIA@SPARC_LAB Design study towards a compact FEL facility at LNF," Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, issn: 01689002. doi: 10.1016/j.nima.2018.01.094.

[2] A. Cianchi - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 909, 12 November 2018, Pages 350-354 Conceptual design of electron beam diagnostics for high brightness plasma accelerator.

[3] G. Franzini - Studies and Measurements on Cavity Beam Position Monitors for Novel Electron Linacs , Tesi dottorrato.

Appendix

