"Broken translation invariance for fluids in external magnetic fields"

Daniel K. Brattan¹

¹Istituto Nazionale di Fisica Nucleare - Sezione di Genova Via Dodecaneso, 33 - 16146 - Genova - Italy

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

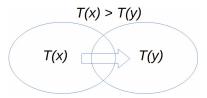
Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Discussion

danny.brattan@gmail.com

What is hydrodynamics?



- Describes the flow of charges between local equilibria - "short scattering time".
- Hydrodynamics broadly consists of three elements:
 - Spatially varying thermodynamic parameters e.g. *T*(*x*), *u*^μ(*x*), . . . ,
 - 2. Conservation eqns e.g. $\partial_{\mu}T^{\mu\nu} = 0, \ \partial_{\mu}J^{\mu} = 0, \ \dots,$
 - Constitutive relations with transport coefficients e.g.

$$J^{\mu} = q u^{\mu} + \sigma^{\mu
u} \partial_{\mu} \left(rac{\mu}{T}
ight) + \mathcal{O}(\partial^2) \; .$$

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Linearised hydrodynamics, qnms and Green's functions

- Hydrodynamics \rightarrow non-linear evolution equations.
- Simplification linearise about equilibrium:

$$\delta \langle J^\mu
angle \sim \int G^{\mu
u}_R \delta A_
u \; .$$

• Structure G_R^{hydro} :

$$G_{R}^{
m hydro}(\omega,ec{\kappa})\sim rac{lpha_{0}(ec{\kappa})}{\omega-\omega_{0}(ec{\kappa})}+lpha_{1}(ec{\kappa})\;.$$
 (2

(1)

Results (II)

e.g. ω₀(k) = -iDk² + O(k⁴).
Hydrodynamics is a "good" description if
1. ω(k) = ∑_n c_nkⁿ converges,
2. and g = G_R - G_R^{hydro} is small.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamic

Research motivation

Results (I)

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Linearised hydrodynamics, qnms and Green's functions

- Hydrodynamics \rightarrow non-linear evolution equations.
- Simplification linearise about equilibrium:

$$\delta \langle J^\mu
angle \sim \int G_R^{\mu
u} \delta {m A}_
u \; .$$

Structure G_R^{hydro} :

$$G_{R}^{
m hydro}(\omega, \vec{k}) \sim \left(lpha_{1}(\vec{k}) - rac{lpha_{0}(\vec{k})}{\omega_{0}(\vec{k})}
ight) + rac{lpha_{0}(\vec{k})\omega}{\omega_{0}(\vec{k})^{2}} + \mathcal{O}(\omega^{2})$$

e.g.
$$\omega_0(\vec{k}) = -iD\vec{k}^2 + \mathcal{O}(\vec{k}^4).$$

• Hydrodynamics is a "good" description if 1. $\omega_0(k) = \sum_n c_n k^n$ converges,

2. and $g = G_R - G_R^{\text{hydro}}$ is small about $\omega = 0$.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamic: Holography

Research motivation

(3)

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Quasihydrodynamics & magnetic fields

- A simple, relevant, example is a charged fluid in a magnetic field.
- Cousin of hydrodynamics where we allow conservation to "relax" e.g.

$$\partial_{\mu}T^{\mu\nu} = F^{\nu\mu}J_{\mu} \neq 0$$
, $\partial_{\mu}J^{\mu} = 0$. (4)

Regardless of the microscopic nature of such a fluid the DC conductivities take the form:

1. $\sigma_{\rm L} = \alpha_{\rm L} = 0$, 2. $\sigma_{\rm H} = n$ and $\alpha_{\rm H} = sT + \mu n$. Why?

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Ward identities

• Let's define the canonical heat current - $Q^i = P^i - \mu J^i$.

- We will assume spatial rotation invariance and spatial parity invariance.
- There are three interesting observables: $\sigma^{ij}(\omega)$, $\alpha^{ij}(\omega)$ and $\kappa^{ij}(\omega)$.
- There is a tower structure in the Ward identities because of how translation invariance is broken:

$$\begin{array}{lll} \langle Q^{i}J^{j}\rangle & = & -\left(\mu\delta^{i}_{k}-\frac{iB}{\omega}\epsilon^{i}_{k}\right)\langle J^{k}J^{j}\rangle-n\delta^{ij}, \\ \langle Q^{i}Q^{j}\rangle & = & -\left(\mu\delta^{i}_{k}-\frac{iB}{\omega}\epsilon^{i}_{k}\right)\langle Q^{k}J^{j}\rangle \\ & & -(sT+\mu n)\delta^{ij}. \end{array}$$

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Ward identities

- Let's define the canonical heat current - $Q^i = P^i - \mu J^i$.
- We will assume spatial rotation invariance and spatial parity invariance.
- There are three interesting observables: $\sigma^{ij}(\omega)$, $\alpha^{ij}(\omega)$ and $\kappa^{ij}(\omega)$.
- There is a tower structure in the Ward identities because of how translation invariance is broken:

$$\begin{aligned} \alpha^{ij}(\omega) &= -\left(\mu\delta^{i}_{\ k} - \frac{iB}{\omega}\epsilon^{i}_{\ k}\right)\sigma^{kj}(\omega) - \frac{n}{\omega}\delta^{ij} ,\\ \kappa^{ij}(\omega) &= -\left(\mu\delta^{i}_{\ k} - \frac{iB}{\omega}\epsilon^{i}_{\ k}\right)\alpha^{kj}(\omega) - \frac{(sT + \mu n)}{\omega}\delta^{ij} \end{aligned}$$

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Ward identities

- Let's define the canonical heat current $Q^i = P^i \mu J^i$.
- We will assume spatial rotation invariance and spatial parity invariance.
- There are three interesting observables: $\sigma^{ij}(\omega)$, $\alpha^{ij}(\omega)$ and $\kappa^{ij}(\omega)$.
- There is a tower structure in the Ward identities because of how translation invariance is broken:

$$\sigma_{\rm L}(\omega) = -\frac{i\chi_{\pi\pi}\omega}{B^2} + \frac{\kappa_{\rm L}(0)\omega^2}{B^2} + \dots ,$$

$$\sigma_{\rm H}(\omega) = n + (\kappa_{\rm H}(0) + \mu (2\chi_{\pi\pi} - \mu n)) \frac{\omega^2}{B^2} + \dots$$

where $\chi_{\pi\pi} = sT + \mu n$.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

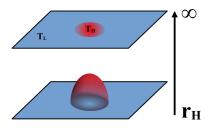
Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Fluids dual to black holes



- It's still hard to compute G_R .
- A very useful set of toy models are those given by gauge-gravity.
- Important facts:
 - gravitational fluctuations of black holes in AdS ↔ fluid dynamics of some ("strongly coupled" field theory),
 - solving Einstein's equations in AdS space allows us to compute retarded Greens functions for some field theory.

Quasihydro

Danny Brattan

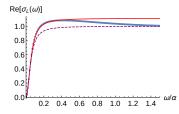
Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

The dyonic black hole



- The dyonic black hole is a special one to (3+1)-dimensions.
- It has a charge and magnetic field.
- In our paper (2005.09662) we used quasihydrodynamic framework to argue for new transport coefficients - the incoherent Hall conductivities.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Summary of introduction - key ideas

- Hydrodynamics describes late time behaviour of interacting systems.
- Quasi-hydrodynamics describes situations where hydrodynamic charges relax.
- Holographic models are useful toys for testing ideas.

Quasihydro

Danny Brattan

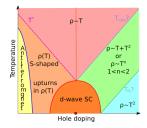
Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Phase diagram of high $-T_c$ superconductors



A cartoon of a high $-T_c$ superconductor phase diagram.

- What are they? Materials with $T_c \gg 30$ K.
- What is the strange metal phase?
 - Comparison of Fermi liquid and strange metal scaling

FL:
$$\rho_{xx} \sim T^2$$
, $\cot(\Theta_{\rm H}) = \frac{\rho_{xx}}{\rho_{xy}} \sim T^2$,
Strange: $\rho_{xx} \sim T$, $\cot(\Theta_{\rm H}) = \frac{\rho_{xx}}{\rho_{xy}} \sim T^2$.

QCP under dome?

1

Quasihydro

Danny Brattan

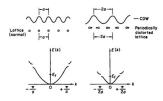
Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related openomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Charge density wave order



1D CDW distortion and energy band gaps from Bhadeshia et al. (2014).

What are charge density waves?

- Peierls (1955) suggested periodic distortion of 1D lattice can lower total energy.
- Start with first Brillouin zone $k = \pm \pi/a$ half filled.
- CDW distortion \rightarrow new superlattice of spacing 2*a*. New first Brillouin zone band gap at $k = \pm \pi/2a$.
- Gain in creating energy gaps can overcome loss of lattice distortion.
- ► Incommensurate CDW → broken translation invariance.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

An interlude: broken translation and Goldstone bosons

- Traditional Goldstone theorem compact group e.g. SU(2), unbroken spatial translation invariance.
- Naïve application of Goldstone theorem needs Fourier transforms/spatial translation invariance.
- ldea: break a double copy $ISO(d) \times ISO(d) \rightarrow ISO(d)$.
- Lagrangian for Goldstone bosons will look like

$$L = \partial_{\mu} \phi^{I} \partial_{\mu} \phi_{I} + \text{higher derivative terms},$$

$$\langle O_{I} \rangle = x_{i} + \delta \phi_{I}(x) .$$

- Shift symmetry of "internal" ISO(d): $\phi_I \rightarrow \phi_I \alpha_I$.
- Spatial translation of ISO(d): $x_i \rightarrow x_i + a_i$.
- Diagonal *ISO*(*d*) symmetry remains if *a_i* = α₁ Goldstone theorem follows.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge

density waves

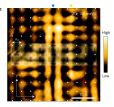
Are these related phenomena?

Results (I) Hydrodynamics

BI2 ST2 CUO6 Summary

Results (II) Returning to the Ward identities

An intriguing observation...



Scan of electronic structure in $Bi_2Sr_2CaCu_2O_8$. Image taken from Hamidian et al. (2016).

- Charge-density wave (CDW) order appears to be a ubiquitous feature of cuprate superconductors.
- Our material, $Bi_2Sr_2CuO_6$:
 - 2D CDW confirmed (by X-ray diffraction) to extend to optimal and over-doped region,¹
 - low critical temperature ($T_c \sim 10 33$ K).

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related

phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

¹Peng et al., "Re-entrant charge order in overdoped (Bi,Pb)_{2.12}Sr_{1.88}CuO_{6+ δ} outside the pseudogap regime".

CDWs and pinning

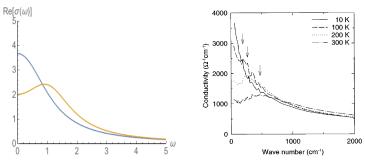


Image from Tsvetkov et al. (1997).

- A non-zero mass for Goldstone of broken translation (i.e. "a pinning frequency") can lead to off-axis peaks.
- Off-axis peak if there is a pinning frequency

$$\sigma(\omega) = \sigma_{(L)} + \frac{n^2}{\chi_{\pi\pi}} \frac{\Omega_{(L)} - i\omega}{\left(\Omega_{(L)} - i\omega\right) \left(\Gamma_{(L)} - i\omega\right) + \omega_0^2}$$

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves

Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Aims

What did we want to do?

- 1. Experiment suggests CDW order important for all thermoelectric transport.²
- 2. Try to understand properties of strange metal phase as a combination of QCP and CDW order.
- 3. Match against results from a single material.
- Problem: no quasi-particle description, strong coupling.
- Answer: use hydrodynamics.
 - No need for specific microscopic mechanism.³
 - Right thing to use when no quasiparticles, only long-lived modes are conserved currents.

²Cyr-Choinière et al., "Enhancement of the Nernst effect by stripe order in a high-Tc superconductor".

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related

phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

³Delacrétaz et al., "Theory of hydrodynamic transport in fluctuating electronic charge density wave states"; Delacrétaz et al., "Theory of collective magnetophonon resonance and melting of a field-induced Wigner solid".

Conservation laws and hydrodynamic flows

Hydrodynamic model: conservation equations

$$\partial_t \mathbf{n} + \partial_i \mathbf{J}^i = \mathbf{0} , \qquad \partial_t \mathbf{s} + \partial_i \left(\frac{\mathbf{Q}^i}{T} \right) = \mathbf{0} , \qquad (5)$$

$$\partial_t \mathbf{P}^i + \partial_j T^{ij} = -\Gamma^{ij} \mathbf{P}_j + F^{ij} J_j - \partial^j \Phi^i O_j , \qquad (6)$$

a Josephson relation

$$\partial_t O^i + \Omega^{ij} O_j = -v^i + \text{higher order in } \partial$$
,

and the constitutive relations e.g.

$$J^{i} = nv^{i} + \sigma^{ij} \left(E_{j} - Bv_{j} - \partial_{j} \mu \right) + \alpha^{ij} \partial_{j} T + \gamma^{ij} \partial_{j} s , \qquad (8)$$

where e.g. $\sigma^{ij} = \sigma_{(L)} \delta^{ij} + \sigma_{(H)} F^{ij}$.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Conservation laws and hydrodynamic flows

Hydrodynamic model: conservation equations

$$\partial_t n + \partial_i J^i = 0$$
, $\partial_t s + \partial_i \left(\frac{Q^i}{T}\right) = 0$, (9)

$$\partial_t \boldsymbol{P}^i + \partial_j \boldsymbol{T}^{ij} = -\Gamma^{ij} \boldsymbol{P}_j + \boldsymbol{F}^{ij} \boldsymbol{J}_j - \partial^j \Phi^i \boldsymbol{O}_j , \qquad (10)$$

a Josephson relation

$$\partial_t O^i + \Omega^{ij} O_j = -v^i + \text{higher order in } \partial$$
, (11)

and the constitutive relations e.g.

$$J^{i} = nv^{i} + \sigma^{ij} \left(E_{j} - Bv_{j} - \partial_{j} \mu \right) + \alpha^{ij} \partial_{j} T + \gamma^{ij} \partial_{j} s , \qquad (12)$$

with spatial parity + $B \sim O(\partial)$ + relativistic + assumption.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Results

- Result: Taking the DC transport coefficients to lowest order in B:
 - Charge resistivity: $\rho_{xx} = \frac{1}{\sigma_{(L)} + \tilde{\sigma}} + \mathcal{O}(B^2).$
 - Magnetoresistance: $\frac{\Delta \rho}{\rho} = B^2 \frac{\sigma_{(L)}^3 \tilde{\sigma}}{n^2} \frac{1}{(\sigma_{(L)} + \tilde{\sigma})^2} + \mathcal{O}(B^4).$

Thermal Hall conductivity:

$$\kappa_{xy} = -BT \frac{\tilde{\sigma}^2 s}{n^4} \left(ns + 2 \frac{\alpha_{(L)} n^2}{\tilde{\sigma}} \right) + \mathcal{O}(B^3).$$

► Hall angle: $\cot \Theta_H = \frac{n}{B\tilde{\sigma}} \frac{1 + \frac{\sigma(L)}{\tilde{\sigma}}}{1 + 2 \frac{\sigma(L)}{\tilde{\sigma}}} + \mathcal{O}(B).$

Nernst coefficient:

$$N = \frac{B \sigma_{(L)} \tilde{\sigma}}{n^2 (\sigma_{(L)} + \tilde{\sigma})^2} (s \sigma_{(L)} - n \alpha_{(L)}) + \mathcal{O}(B^3).$$

DC electric longitudinal conductivity

$$\sigma_{\rm DC} = \sigma_{\rm (L)} + \tilde{\sigma}$$
 with $\tilde{\sigma} = \frac{n^2}{\chi_{\pi\pi}} \frac{\Omega_{\rm (L)}}{\Omega_{\rm (L)} \Gamma_{\rm (L)} + \omega_0^2}$

Only four variables \(\sigma_{(L)}\), \(\tilde{\sigma}\), n and s. But we will measure five observables - system overconstrained.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

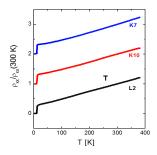
Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I)

Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities



Data:

- $\stackrel{\bullet}{\blacktriangleright} \frac{\rho_{xx} \sim (T, B^0)}{\Delta \rho / \rho \sim (T^{-4}, B^2)},$
- $\cot(\Theta_{\rm H}) \sim (T^{\frac{3}{2}}, B^{-1})$
- and $\kappa_{xy} \sim (T^{-3}, B)$.

Variables:

- ▶ n,
- ► S,
- $\blacktriangleright \sigma_{(L)},$
- and $\tilde{\sigma}$.

Quasihydro

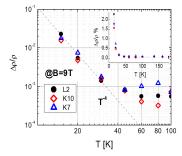
Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related phenomena?

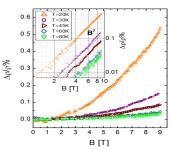
Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities



The data:

- $\rho_{xx} \sim (T, B^0),$ • $\Delta \rho / \rho \sim (T^{-4}, B^2),$
- $\quad \bullet \quad \overline{\cot(\Theta_{\rm H})} \sim (T^{\frac{3}{2}}, B^{-1})$
- and $\kappa_{xy} \sim (T^{-3}, B)$.



Variables:

► n,

- ► S,
- $\sigma_{(L)},$
- and $\tilde{\sigma}$.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

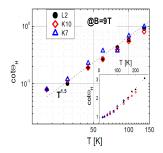
Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I)

Hydrodynamic Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities



The data:

- $\Delta \rho / \rho \sim (T^{-4}, B^2),$
- $\blacktriangleright \operatorname{cot}(\Theta_{\mathrm{H}}) \sim (T^{\frac{3}{2}}, B^{-1})$
- and $\kappa_{xy} \sim (T^{-3}, B)$.

Variables:

- ► n,
- ► S,
- $\blacktriangleright \sigma_{(L)},$
- and $\tilde{\sigma}$.

Quasihydro

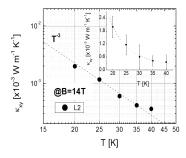
Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related phenomena?

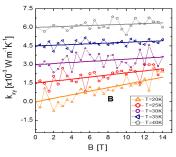
Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities



The data:

- $ho_{xx} \sim (T, B^0),$ $\Delta \rho / \rho \sim (T^{-4}, B^2),$
- $\cot(\Theta_{\rm H}) \sim (T^{\frac{3}{2}}, B^{-1})$
- and $\kappa_{xy} \sim (T^{-3}, B)$.



Variables:

► n,

- ► S,
- $\triangleright \sigma_{(L)},$
- and $\tilde{\sigma}$.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

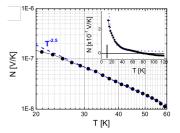
The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆

Summary

Results (II) Returning to the Ward identities

Recovering the Nernst behaviour



The Nernst coefficient behaves as

$$N \sim \frac{\mu B \tilde{\sigma}}{nT} \sim \frac{\mu}{T \cot \Theta_H} \sim T^{-2.5}$$
 (13)

We have complete consistency with experiment!

 N dominated by CDW relaxation, anomalously large Nernst signal can be explained.⁴

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

⁴Cyr-Choinière et al., "Enhancement of the Nernst effect by stripe order in a high-Tc superconductor".

Summary of our results

- Theory results:
 - developed a hydrodynamic theory of CDW order with magnetic field,
 - determined the heat current (previously not found in literature),
 - 3. and computed the DC transport coefficients in low *B* limit.
- Experimental results:
 - 1. rare case of measuring five transport coefficients in the same material,
 - determined the low temperature scaling of the transport coefficients,
 - and matched them to our theoretical model getting perfect agreement.
- Still need AC correlators if we are to claim perfect match.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

- Subsequently Martina went on to study the non-zero frequency responses.
- Everything agreed with our model.
- We had a party to celebrate winning lots of grants to apply our results.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

AC response

- Subsequently Martina went on to study the non-zero frequency responses
- Everything agreed with our model.
- We had a party to celebrate winning lots of grants to apply our results.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Ward identities and broken translation invariance

 Suppose our system satisfies relativistic conservation equations

$$\partial_{\mu}T^{\mu\nu} = F^{\nu\mu}J_{\mu} - \left(\partial^{\nu}\Phi^{i}\right)O_{i}, \qquad \partial_{\mu}J^{\mu} = 0.$$
 (14)

- Again we assume rotation invariance and spatial parity invariance.
- The Ward identities are generally modified by presence of O_i

$$\alpha^{ij}(\omega) = -\left(\mu\delta^{i}_{k} - \frac{1}{i\omega}F^{i}_{k}\right)\sigma^{kj}(\omega) + \frac{\omega_{0}^{2}\chi_{\pi\pi}}{(i\omega)^{2}}\langle J^{i}O^{j}\rangle(\omega) - \frac{n}{i\omega}\delta^{ij}.$$
 (15)

Again these have consequences for the AC conductivities.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Ward identities at low frequencies

Spontaneous breaking

$$\sigma_{(L)}(\omega) = -\frac{i}{B^2} \left(\alpha_{(H)}(0) + \mu n \right) \omega + \frac{\kappa_{(L)}(0)}{B^2} \omega^2 + \mathcal{O}(\omega^3) , \qquad (16)$$

$$\sigma_{(H)}(\omega) = \sigma_{(H)}(0) + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} \omega^2 + \frac{\kappa_{H}(0) + \mu (2\chi_{\pi\pi} - \mu n)}{\omega^2} + \frac{\kappa$$

$$(H)(\omega) = \sigma_{(H)}(0) + \frac{H(\gamma) + V(\gamma) + V(\gamma)}{B^2} \omega^2 + \mathcal{O}(\omega^3)$$
(17)

Pseudo-spontaneous breaking

$$\sigma_{(L)}(\omega) = -\frac{\omega_0^4 \chi_{\pi\pi}^2 \zeta_{(L)}(0)}{B^2} + \mathcal{O}(\omega) , \qquad (18)$$

$$\zeta^{ij}(\omega) = \frac{1}{i\omega} \left(\langle O^j O^i \rangle - \delta^{ji} \right) .$$
 (19)

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

- The cuprate cartoon Observations of charge density waves Are these related phenomena?
- Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary
- Results (II) Returning to the Ward identities

Now use hydrodynamics

- Hydrodynamics also gives expressions for the DC conductivities.
- For Γ = 0, turns out that there is a one-to-one relationship between diffusive hydrodynamic transport coeffs. and DC.

What we learn:

1. We have analytic expressions for all the hydrodynamic transport coefficients in terms of σ_{DC}^{ij} , α_{DC}^{ij} and κ_{DC}^{ij} .

2.
$$\sigma^{ij} \neq \sigma_{(L)} \delta^{ij}$$
 but $\sigma^{ij} = \sigma_{(L)} \delta^{ij} + \sigma_{(H)} F^{ij}$.

- 3. One can have off and on-axis Drude peaks from phase relaxation alone (no need for a Γ).
- 4. Freezing out the "phonon"

$$\Gamma_j^i \equiv \omega_0^2 \left(\Omega^{-1}\right)_j^i \ . \tag{20}$$

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

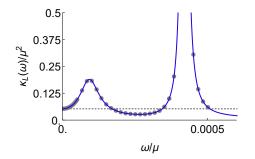
Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Let me show you that this works...



The AC longitudinal thermal conductivity at $B/\mu^2 \approx 3 \times 10^{-4}$ and $T/\mu = 10^{-2}$ in the pseudo-spontaneous regime. Notice the appearance of a "phonon" peak displaced from $\omega = 0$.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Ideas for future work

- Return to our experimental paper and check results in light of new observations.
- By carefully using Ward identities we can analyse how different mechanisms contribute to the DC e.g.
 - a non-zero Γ,
 - charged lattices,
 - helical phases,
 - anyons,
 - anomalous transport...
- I have a new powerful procedure I'm hungry for condensed matter systems to apply it to.

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation

The cuprate cartoon Observations of charge density waves Are these related phenomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Quasihydro

Danny Brattan

Introduction Hydrodynamics Quasi-hydrodynamics Holography

Research motivation The cuprate cartoon Observations of charge density waves Are these related phonomena?

Results (I) Hydrodynamics Bi₂Sr₂CuO₆ Summary

Results (II) Returning to the Ward identities

Discussion

Thanks for listening!