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The Large Hadron Collider

The LHC
• 27 km ring of accelerating structures and 

superconducting magnets
• 2 Proton beams are accelerated up to an energy of 

6.5 TeV
• The protons beams are made collide in various 

interaction points by the various experiment

• LHC is now in the long shutdown phase
• Analysis of the data taken during the run2 (2015-

2018) are ongoing
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The ATLAS Detector
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The ATLAS detector:
• Multipurpose detector
• Detect the particles coming from 

proton-proton interactions
• Reconstruct the tracks and the 

energies of the particles
• Cylindrical shape with a layered 

structures



ATLAS and the Standard Model
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ATLAS has a wide physics program to test the Standard 
Model
• Probe new theory beyond the Standard Model
• Precision measurement of the SM processes

• Stress the theory predictions exploring extreme 
region of the phase space  Low Mass Drell-Yan

The discovery of the Higgs boson in 2012 by ATLAS and CMS 
completed the Standard Model (SM) Picture
• SM successfully describe all the measurement performed in 

ATLAS so far

Elementary Particles of the Standard Model



Proton-Proton Collision at LHC

At the LHC proton are colliding
• At high energy their structure is 

broken
• We observe the product of their 

constituent interaction

An input for the calculation of all the process at the LHC

• Information encoded in the Parton Distribution 

Functions 

• Intrinsically non perturbative quantities

• Most of the PDF input come from electron-proton 

scattering data from the HERA experiment

• Represent the probability that a parton carries a fraction 

x of the proton momentum

• LHC PDF program complementary to HERA
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Image from 0911.0884

https://arxiv.org/pdf/0911.0884.pdf


The Drell-Yan Process

Vector Boson creation in high energy hadron collision
• A quark and an antiquark annihilate into a vector 

boson
• The boson  then decay leptonically
• simplest 𝑝𝑝 2 → 2 process for a QCD calculation 

since it's EW couplings plus PDFs only

Main Production mode for Z boson (𝑚𝑍 = 91.2 GeV) at 
the LHC
Interesting for:
• Precision measurement and test of the Standard 

Model
• QCD and EW measurement
• Input for  Parton Distribution Function (PDF) 

evaluation
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The Low Mass Drell-Yan

Measurement of the inclusive Drell-Yan process in the 
dimuon channel
• In proton-proton collision at 𝑠 = 13 TeV
• At low invariant mass, 𝑚𝜇𝜇 = 7 − 60 GeV

Measure Single and Double differential cross section in 
dimuon pair quantities

•
𝑑𝜎

𝑑𝑚𝜇𝜇

•
𝑑𝜎

𝑑𝑚𝜇𝜇 𝑑𝑝𝑇
𝜇𝜇

•
𝑑𝜎

𝑑𝑚𝜇𝜇 𝑑|𝑦𝜇𝜇|

Simulation of the Drell-Yan cross-section 
in wide mass range
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Rapidity Definition

Previous ATLAS measurement at 
7 TeV (only differential in mass)

https://arxiv.org/pdf/1404.1212.pdf


Interest of the Analysis

The analysis explores extreme region of the phase

• With 𝑚𝜇𝜇~8 GeV →   𝑥~4 ⋅ 10−5

• Low-x resumed result gave interesting results with 
HERA data comparison

• Interest for a comparison with this measurement

• Binning in rapidity we are more sensitive to low-x

•
𝑑𝜎

𝑑𝑚𝜇𝜇 𝑑|𝑦𝜇𝜇|

• Input for a Parton Distribution Function Fit
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lm DY 13TeV

𝑥1,2 = 𝑒±𝑦𝜇𝜇
𝑀

13TeV

𝑄 = 𝑀

x-Q2 plane showing the kinematic region 
accessed by the analysis, complementary 
region to one accessed by HERA

Image based on
http://www.hep.ph.ic.ac.uk/
~wstirlin/plots/plots.html

https://arxiv.org/pdf/1710.05935.pdf
http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html


Interest of the Analysis

Measurement of dimuon pair 𝑝𝑇 spectrum at low invariant 
mass

•
𝑑𝜎

𝑑𝑚𝜇𝜇 𝑑𝑝𝑇
𝜇𝜇

• Exploit the good µ momentum resolution of the ATLAS 
detector at low mass

• Difficult distribution to be predicted
• Tuning of non perturbative parameters in the theoretical 

prediction in kinematics region never explored before
• Useful to confirm 𝑊 boson 𝑝𝑇 extrapolation from the 

𝑍 → 𝜇𝜇 spectrum
• 𝑊 𝑝𝑇 extrapolation is a key input for 𝑊 mass 

measurement

Di-muon Momentum Resolution at 
low mass, 

reconstruction as function of  𝑝𝑇
𝜇𝜇

at 
low mass
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The Low Mass Drell-Yan
Event Selection

Drell-Yan process measurement in the dimuon channel in proton 
proton collision at 𝑠 = 13 TeV

Event Selection
• ATLAS 2015 dataset

• 1.28 fb-1

• Need to use special low mass di-muon triggers (next slide)
• 2 muons
• Low invariant mass selection

• mµµ  = (7.3, 8.7)+(12, 56) GeV
• Low Pt requirement

• 𝑝𝑇
𝜇
> 4.5 GeV

• Typical 𝑝𝑇
𝜇

cut for 𝑍 analysis, 𝑝𝑇
𝜇
> 20 GeV

• Isolation Requirement
• NO charge requirement

• Distribution are plotted as OppositeSign – SameSign
Subtraction

Mass Spectrum of the selected 
signal region
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Υ
→
𝜇
𝜇



Trigger Selection
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Trigger Prescale Luminosity

HLT 𝑝𝑇
𝜇
> 4, 𝐺𝑒𝑉 𝑚𝜇𝜇 ∈ 7, 9 𝐺𝑒𝑉 4 319.68 pb−1

HLT 𝑝𝑇
𝜇
> 4, 𝐺𝑒𝑉 𝑚𝜇𝜇 ∈ 12, 60 𝐺𝑒𝑉 4 319.68 pb−1

HLT 𝑝𝑇
𝜇
> 6, 𝐺𝑒𝑉 𝑚𝜇𝜇 ∈ 12, 24 𝐺𝑒𝑉 1 1280.28 pb−1

HLT 𝑝𝑇
𝜇
> 6, 𝐺𝑒𝑉 𝑚𝜇𝜇 ∈ 24, 60 𝐺𝑒𝑉 1 1280.28 pb−1

Explore low invariant mass and low 𝑝𝑇
𝜇

event selection 
• Use of special di-muon trigger

• Z and High Mass Drell-Yan typically use single muon trigger
• Can’t trigger at low mass on single muon event, too may events

• To keep the ATLAS trigger rate at  ~1kHz low mass trigger are prescaled (rejection rate)
• Different pre-scale between the different trigger in the trigger chain that needed to be taken  into account 

in MC



Background
Perform the measurement – subtract the background

Fake Muons: 𝜋±, 𝐾 misidentified as muons
• Require high quality muons
• Assumed to be symmetric in charge

• 𝑁𝑓𝑎𝑘𝑒
+,− + 𝑁𝑓𝑎𝑘𝑒

−,+ = 𝑁𝑓𝑎𝑘𝑒
+,+ + 𝑁𝑓𝑎𝑘𝑒

−,−

• Reduced by plotting the distribution as opposite sign minus 
same sign subtraction

Biggest background components is given by muon generated in 
Multijets + 𝒃ഥ𝒃 / 𝒄ത𝒄 jets events
• Non prompt decay muons are misidentified as DY muons
• Excess in opposite sign muons
• Track isolation requirement greatly reduce this component…

• …but still a large number of these events enter in the 
selection

• Poorly described in MC
• Difficult to describe the rate of these events in the selection
• Data-driven estimation approach
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Representation of multijet
background event

𝝁+/−



Analysis Strategy
Data-driven estimation of the Multijets + 𝑏ത𝑏 / 𝑐 ҧ𝑐 jets background 
components

• This component is extracted by a data-driven approach
• Use the impact parameters quantities to discriminate between 

signal events and background events
• Fit the quantity given by the squared sum of the 𝑑0 and Δz0

significance

χ2
QCD distribution in Data and MC 13

𝜒𝑄𝐶𝐷
2 =

𝑑0 𝜇1
𝜎𝑑0 𝜇1

2

+
𝑑0 𝜇2
𝜎𝑑0 𝜇2

2

+
Δ𝑧0 𝜇1, 𝜇2

𝜎𝑧0
2 𝜇1 + 𝜎𝑧0

2 𝜇2

2

• Δ𝑧0 𝜇1, 𝜇2 = 𝑧0 𝜇1 − 𝑧0 𝜇2

Representation of multijet
background event



Analysis Strategy

Represents the probability that the 2 muons are coming from 
the same vertex
• Use Control Region given by not isolated muons

• Gives template for Background from data
• Fit this quantity to the real data

𝑃𝑟𝑜𝑏𝑛𝑜𝑡−𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝜒𝑄𝐶𝐷
2 , 𝑛𝑑𝑓 = 3 ∼ 𝐵𝐺𝑖

𝑃𝑟𝑜𝑏𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝜒𝑄𝐶𝐷
2 , 𝑛𝑑𝑓 = 3 ∼ 𝑘 ⋅ 𝐷𝑌𝑖𝑠𝑜−𝑖𝑠𝑜 + 𝑏𝑖𝑠𝑜−𝑖𝑠𝑜𝐵𝐺𝑖

The probability 

𝑃𝑟𝑜𝑏 𝜒𝑄𝐶𝐷
2 , 𝑛𝑑𝑓 = 3

Blue component – from Monte Carlo
Red component – fitted to the data 

𝑃𝑟𝑜𝑏 𝜒𝑄𝐶𝐷
2 , 𝑛𝑑𝑓 = 3 distribution for 

isolated and not-isolated selection
14

Not Isolated

Isolated

𝑃𝑟𝑜𝑏(𝜒𝑄𝐶𝐷
2 )

𝑃𝑟𝑜𝑏(𝜒𝑄𝐶𝐷
2 )

biso iso



Modelling of the Impact Parameters

Δz0 significance distribution d0 significance distribution

Check that the impact parameters are well described in Monte Carlo
• Distance of the track from the beam spot
• These quantities enter in the Background estimation

Evaluate a data driven correction 
to improve the Data/MC 
agreement

15



Modelling of the Impact Parameters

Invariant Mass spectrum 
for the Υ → µµ  Region 

Invariant Mass spectrum for 
the Z→ µµ  peak region 16

Extrapolate a data driven correction for the Impact Parameters 
distribution outside the Signal Region
• Look at region excluded by the invariant mass selection

• Υ → µµ  Region (𝑚Υ1𝑆 = 9.46 GeV)

• Z → µµ peak region (𝑚𝑍 = 91.2 GeV)



Modelling of the Impact Parameter
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IP resolution study as function of 

𝑝𝑇
𝜇
, shows good agreement between 

the 𝑍 → 𝜇𝜇 events (high 𝑝𝑇
𝜇

) and the 

Υ → 𝜇𝜇 (low 𝑝𝑇
𝜇

)

The data/MC 
agreement has been 
checked as a function 
of the detector 
coordinate and the 

energy (𝑝𝑇
𝜇

) of the 
muon (multiple 
scattering effect)

IP resolution study as function of 

𝑝𝑇
𝜇
, shows good agreement between 

the 𝑍 → 𝜇𝜇 events (high 𝑝𝑇
𝜇

) and the 

Υ → 𝜇𝜇 (low 𝑝𝑇
𝜇

)

Pseudorapidity



Impact Parameter Corrections
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Υ → 𝜇𝜇 𝑍 → 𝜇𝜇

The agreement is restored as 

function of 𝜂 and   𝑝𝑇
𝜇

Evaluate a correction 

• span a wide 𝑝𝑇
𝜇

• 𝑝𝑇
𝜇

and 𝜂𝜇 dependent correction
• Rescale the Monte Carlo IP 

resolution to the Data one

After 
Correction



Impact Parameter Correction

After the data-driven correction there’s a 
great improvement in the Data/MC 
comparison

Δz0 and d0 significance inclusive distribution 
before  and after applying the impact 
parameters correction 
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After 
Correction

After 
Correction



Impact Parameter Correction
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The 𝑑0 and 𝑧0 quantities are used to extract a 
data driven estimation of the 𝑄𝐶𝐷 multijet
background
• The  Impact Parameter correction have an 

effect on the on the result of  fit method
• Plot the estimated background component 

before and after the IP correction 
• The number of estimated 𝑏ത𝑏 / 𝑐 ҧ𝑐

increases after the correction

Υ
→
𝜇
𝜇

𝑃𝑟𝑜𝑏𝑛𝑜𝑡−𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝜒𝑄𝐶𝐷
2 , 𝑛𝑑𝑓 = 3 ∼ 𝐵𝑖

𝑃𝑟𝑜𝑏𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝜒𝑄𝐶𝐷
2 , 𝑛𝑑𝑓 = 3 ∼ 𝑘 ⋅ 𝐷𝑌𝑛𝑜𝑡𝑖𝑠𝑜−𝑛𝑜𝑡𝑖𝑠𝑜 + 𝑏𝑖𝑠𝑜−𝑖𝑠𝑜𝐵𝑖



Cross-section Extrapolation

In the Next Slides studies on the systematic uncertainties affecting the analysis are presented
The studies show the effect of the uncertainties on the cross-section results

• The cross-section extrapolated with bin-by-bin unfolding

•
𝑑𝜎

𝑑𝑚𝜇𝜇
=

𝑁𝑖
𝐷𝐴𝑇𝐴−𝑁𝑖

𝐵𝐺

𝐿 ⋅ 𝐶𝐷𝑌,𝑖 ⋅ Γ𝑖

• 𝐶𝐷𝑌 = Acceptance

• Γ𝑖 = Bin size

Future Plan: more sophisticated unfolding method

21Alessandro Guida

Acceptance



Results – Single Differential Result
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Data plotted with (first determination) of systematic 
and statistical uncertainty 

• Poweg+Pythia: NLO (+ LL Parton Shower)
• NNLO QCD 𝑘𝐹
• MC generator used in the analysis

• FEWZ  → NNLO + NLO EW Correction
• In the first and last bin FEWZ is set to Zero: 

the prediction are not ready yet

• DYTURBO → NNLO + NNLL + NLO EW Correction

Uncertainty studies not finalised
Systematic Uncertainty
• Isolation efficiency systematic
• Trigger efficiency systematic

Υ
→
𝜇
𝜇



Results – Double Differential Result
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Double differential cross-section result at low mass and high mass

Cross-section results unfolded in 𝑚𝜇𝜇

and 𝑝𝑇
𝜇𝜇

• Poweg+Pythia

➢ NLO (+LL from Parton 

Shower)

• DYTURBO 

➢ (N3LO+N3LL) + NNLO



Results – Double Differential Result
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Double differential cross-section result at low mass and high mass

Cross-section results unfolded in 𝑚𝜇𝜇

and |𝑦𝜇𝜇|

• Poweg+Pythia

➢ NLO (+LL from Parton Shower)

Dominating Uncertainty
Systematic Uncertainty
• Isolation efficiency systematic
• Trigger efficiency systematic



Summary and Outlook

25

Low Mass Drell-Yan Analysis
• Probe extreme region of the phase space
• Test Low-x region

• Test low-𝑝𝑇
𝜇𝜇

prediction in new phase space region

Main challenges in the analysis
• Large Background component 

• Data driven template method
• Modelling of the Impact Parameters quantities

• Data driven correction evaluated from control region

Next Steps 
• Refine the uncertainties evaluation

• Isolation efficiency, trigger efficiency uncertainties
• Use iterative method for the cross-section unfolding
• PDF study (Fit) with our measurement



Thank You!
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BACKUP
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Impact Parameter Correction
Overall the correction leads to a lower DY normalization from the fit, compensated by an higher QCD 
background normalization 
• The kinematic control plot are performed applying the QCD Background normalization

Prob (χ2
QCD , ndf = 3) inclusive distribution (the

quantity fitted in the background estimation
method) 
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We check that the IP correction  
works well on the low massDY region



Physics Analysis

Data Selection and 
reconstruction 
workflow
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Monte Carlo 
simulation 
workflow

Event Selection, improvement of BG 
estimation, assessment of the uncertainty…



MC Generation and Detector Simulation

Event Generation

Detector Simulation
and digitization
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Reconstruction

Difference between real and simulated performance of the detector are studies
• Correction for MC events are evaluated


