New results on theoretically clean observables in rare B-meson decays from LHCb

$$(B_{(s)}^0 \rightarrow \mu^+ \mu^- \text{ and } R_K)$$

Matteo Rama

INFN Pisa

6 April 2021

INFN Pisa

Most slides from M. Santimaria, K. Petridis, CERN seminar, 23/3/21

The power of indirect searches

- Precision measurements are a powerful tool to <u>unveil new particles indirectly</u> : \bullet
- <u>1970</u>: charm presence invoked from the suppression of $K^0 \rightarrow \mu^+ \mu^-$ before the J/ψ discovery
- <u>1973</u>: 3X3 CKM matrix is needed to explain the CP violation observed in kaons
- <u>1987</u>: top mass limit from loop contribution in $B^0 \overline{B}^0$ mixing: $m_t > 50$ GeV

[PRD 2 (1970) 1285] [PTP 49 (1973) 652-657] [PLB 192 (1987) 245-252]

Because of the large b mass, rare B decays offer a rich phenomenology for <u>indirect searches of New</u> ۲ Physics (NP)

Effective theory for rare B decays

 $b \rightarrow s\ell^+\ell^-$ can be described with an "Effective Hamiltonian", where high- and low-energy contributions are factorised $(M_h \ll M_W)$

"point-like interaction" as in the Fermi description of the neutron decay

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \sum_i V^i_{CKM} C_i(\lambda) \mathcal{O}_i(\lambda)$$

- Wilson coefficients (short-distance): evaluated in perturbation theory
- Local operators (long-distance): the corresponding form factor is computed with, e.g., lattice QCD

Probing new physics with rare B decays

SM operators for $b \rightarrow s\ell^+\ell^-$: \bullet

$$\mathcal{O}_{9}^{(\prime)} = \left(\overline{s}P_{\mathrm{L(R)}}b\right)\left(\overline{\ell}\gamma^{\mu}\ell\right)$$
$$\mathcal{O}_{10}^{(\prime)} = \left(\overline{s}P_{\mathrm{L(R)}}b\right)\left(\overline{\ell}\gamma^{\mu}\gamma^{5}\ell\right)$$

•

 $\Delta \mathcal{H}_{\rm NP} = \overbrace{\Lambda_{\rm NP}^2}^{C_i} \mathcal{O}_i$

- Input from $B_s^0 \rightarrow \mu^+ \mu^-$ (here from the latest ATLAS+CMS+LHCb combination)
- And input from R_K and R_{K^*}

Both $B \rightarrow \mu\mu$ and R_K SM predictions have robust and very small theory uncertainty

NP can alter $C_i^{(\prime)}$ but also introduce new operators

Precision measurements go well beyond collision energies

• The latest global fit prefer NP contributions to C_9 and C_{10}

The LHCb data taking

• LHCb exploits the large $pp \rightarrow b\overline{b}X$ production cross section in forward direction (2 < η < 5)

 $\sigma(pp \to b\bar{b}) = 144 \,\mu b \text{ at } \sqrt{s} = 13 \text{ TeV}$ <u>PRL 118 (2017) 052002</u>

- Run 2 luminosity levelled to $4.4 \times 10^{32} cm^{-2} s^{-1}$ (>x2 design value)
- LHCb dataset: $3 f b^{-1} (\sqrt{s_{Run1}} = 7, 8 \text{ TeV}) + 6 f b^{-1} (\sqrt{s_{Run2}} = 13 \text{ TeV})$

Matteo Rama

5

The LHCb detector

- High vertex resolution (VELO) $\sigma_{IP} = 15 + 29/p_T \ \mu m$
- Low momentum muon trigger $p_T(\mu) > 1.75 \ GeV \ (2018)$

- $\epsilon_{\mu} \sim 98\%$ with $\epsilon_{\pi \to \mu} < 1\%$
- Excellent momentum resolution \bullet $\frac{\sigma p}{n} = 0.5 - 1.0$ % for p in [2,200]GeV

 \rightarrow narrow mass peak

Matteo Rama

New measurement of $B \rightarrow \mu\mu$ and R_{κ} at LHCb, 6 April 2021

Good particle identification capabilities (RICH+CALO+MUON)

$B \rightarrow \mu\mu$ decays in the Standard Model

ullet

single Wilson coefficient and single hadronic decay constant (known at 0.5%)

Very clean prediction of the SM branching fractions \bullet

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)_{\text{SM}} = (3.66 \pm 0.14) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-)_{\text{SM}} = (1.03 \pm 0.05) \times 10^{-10} \qquad \text{[JHEP 10 (2019) 232]}$$

$B_s^0 \rightarrow \mu^+ \mu^-$: not only branching fraction

By measuring the $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime: lacksquare

$$\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}}}{1 - y_{s}^{2}} \begin{bmatrix} \frac{1 + 2A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \end{bmatrix} \qquad A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} \equiv \frac{R_{H}^{\mu^{+}\mu^{-}} - R_{L}^{\mu^{+}\mu^{-}}}{R_{H}^{\mu^{+}\mu^{-}} + R_{L}^{\mu^{+}\mu^{-}}} \\ y_{s} = \frac{\Delta\Gamma_{s}}{2\Gamma_{s}}$$

we can extract the asymmetry $A_{\Delta\Gamma}^{\mu^+\mu^-}$ (=1 in SM) Clean observable \rightarrow additional NP constraint

Sensitivity to $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ (ISR) at high $m_{\mu\mu}$: new observable ulletincluded in this analysis

SM prediction at $O(10^{-10})$ for $m_{\mu\mu} > 4.9 \ GeV/c^2$ [PRD97 (2018) 053007 [JHEP 11 (2017) 184]

Matteo Rama

New measurement of $B \rightarrow \mu\mu$ and R_{K} at LHCb, 6 April 2021

Bremsstrahlung (FSR) experimentally included in $BF(B_s^0 \rightarrow \mu\mu)$ via PHOTOS

Experimental status of $B \rightarrow \mu\mu$ measurements

- 2015: First observation of Bs->mumu with LHCb and \bullet CMS Run 1 data
- 2017: First single-experiment observation by LHCb with lacksquareRun 1 + 2015/16 data
- 2020: ATLAS+CMS+LHCb combination using Run 1 + ullet2015+2016 data

- $BF(B_S^0 \to \mu^+ \mu^-) = (2.69^{+0.37}_{-0.35}) \times 10^{-9}$
- $\tau(Bs \to \mu^+ \mu^-) = 1.91^{+0.37}_{-0.35} \, ps$
- $BF(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-9} @ 95\% \text{ CL}$

 $B(B^0 \to \mu^+ \mu^-) \ (10^{-9})$

Candidates / (50 MeV/c²

35 H

30 H

25

20

15

PRL 118 (2017) 191801

$B \rightarrow \mu\mu$ analysis strategy

- This is the "legacy measurement" of LHCb on the full Run 1 + Run 2 data (9 fb^{-1})
- The strategy is well established since 2017 but introduces several improvements
- Select muon pairs with $m_{\mu^+\mu^-} \in [4900,6000] MeV$ forming a displaced vertex
- Signal mass region is blinded until the analysis is finalised
- The BFs are extracted through a fit to $m_{\mu^+\mu^-}$
- The selected dataset is dominated by combinatorial background
- To reject it we use a multivariate classifier "BDT" (Boosted **Decision Tree**)
- The algorithm primarily exploits track isolation and vertex properties

0

6000

[LHCb-PAPER-2021-007]

BDT calibration

- BDT flat for signal BDT and decreasing for combinatorial bkg. Events are categorised into 6 "BDT bins".
- We measure the branching fractions with a simultaneous mass • fit in 10 categories (2 Runs X 5 BDT bins)
- (The first bin [0,0.25] is excluded since it's backgrounddominated)

- The signal BDT output is calibrated on data-corrected simulation
- Cross-checked on $B^0 \rightarrow K^+\pi^-$ data
- Shape corrected for PID and trigger efficiencies •
- BDT-lifetime correlations accounted for in the $B_s^0 \rightarrow \mu^+ \mu^-(\gamma)$ • signals

Mass shape calibration

- The $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ mean and resolution values are measured on data
- The mean is obtained from $B^0 \to K^+\pi^-$ and $B^0_s \to K^+K^-$ data for $B^0 \to \mu^+\mu^-$ and $B^0_s \to \mu^+\mu^-$

• The resolution is interpolated from mass fits to $c\overline{c}$ and $b\overline{b}$ resonances:

 $\sigma_{m(\mu^+\mu^-)} = 21.96 \pm 0.63 \text{MeV} (\text{Run2})$

• Two normalisation channels are employed: perform mass fits to compute the yields

avoided by computing the ratio to a well-known channel

Normalisation of signal yield: mass fit

1. $B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$ Two muons in the final state \rightarrow similar trigger and reconstruction

Two-body B decay \rightarrow same signal topology

Matteo Rama

New measurement of $B \rightarrow \mu\mu$ and R_{κ} at LHCb, 6 April 2021

[LHCb-PAPER-2021-007]

• To measure the branching fraction, luminosity and cross-section uncertainties are

Normalisation of signal yield: results

• The observed signal yield is converted into a BF according to:

$$\mathcal{B}(B^0_{d,s} \to \mu^+ \mu^-) = \underbrace{\frac{\mathcal{B}_{norm}}{N_{norm}} \times \frac{\epsilon_{norm}}{\epsilon_{sig}}}_{\alpha_d} \times \frac{f_{norm}}{f_{d,s}} \times N_{B^0_{d,s} \to \mu^+ \mu^-}$$

- BF and yield of the normalisation channel
- Signal/normalisation efficiency ratio
- Ratio of hadronisation fraction (for the B_s^0) Very recent LHCb combination $f_s/f_d(7\text{TeV}) = 0.239 \pm 0.008$, $f_s/f_d(13\text{TeV}) = 0.254 \pm 0.008$
- Combining the two normalisation channels we obtain the following "single-event sensitivities" :

$$\alpha_{B_s^0 \to \mu^+ \mu^-} = (2.49 \pm 0.09) \times 10^{-11}$$
$$\alpha_{B^0 \to \mu^+ \mu^-} = (6.52 \pm 0.11) \times 10^{-12}$$
$$\alpha_{B_s^0 \to \mu^+ \mu^- \gamma} = (2.98 \pm 0.11) \times 10^{-11}$$

• Assuming SM signals we expect:

$$\begin{split} N(B_s^0 \to \mu^+ \mu^-)_{SM} &= 147 \pm 8 \\ N(B^0 \to \mu^+ \mu^-)_{SM} &= 16 \pm 1 \\ N(B_s^0 \to \mu^+ \mu^- \gamma)_{SM} &\approx 3 \end{split}$$

Backgrounds

After applying a strong PID cut on both muons, three classes of backgrounds remain:

- 1. Combinatorial, over the full mass spectrum (floating component)
- 2. Semileptonic backgrounds (partially reconstructed) populating the left mass sideband

3. $B_{(s)}^{0} \rightarrow h^{+}h^{-'-} \rightarrow \mu^{+}\mu^{-}$ doubly misidentified background, peaking in $B^{0} \rightarrow \mu^{+}\mu^{-}$ mass region

Semileptonic backgrounds

- Channels with one misidentified hadron: $B^0 \to \pi^- \mu^+ \nu_\mu$, $B^0_S \to K^- \mu^+ \nu_\mu$ and $\Lambda_b \to p \mu^- \overline{\nu_\mu}$
- Channels with two muons in the final state: $B^{+(0)} \rightarrow \pi^{+(0)} \mu^+ \mu^-$ and $B_c^+ \rightarrow J/\psi(\mu^+\mu^-)\mu^+\nu_\mu$
- Each source is estimated by normalising to the $B^+ \rightarrow J/\psi K^+$ channel:

$$N_x = N_{B^+ \to J/\psi K^+} \frac{f_x}{f_d} \frac{\mathcal{B}_x}{\mathcal{B}_{B^+ \to J/\psi K^+}} \frac{\epsilon_x^{Tot}}{\epsilon_{B^+ \to J/\psi K^+}}$$

- Efficiency- and BF-corrected $B^+ \rightarrow J/\psi K^+$ yield
- Branching fraction and hadronisation fraction for background mode X
- Total background efficiency
 - Estimated background events in the high BDT region (BDT \geq 0.5):

$$B^{0} \to \pi^{-}\mu^{+}\nu_{\mu} : 91 \pm 4$$
$$B^{0}_{s} \to K^{-}\mu^{+}\nu_{\mu} : 23 \pm 3$$
$$\Lambda^{0}_{b} \to p\mu^{-}\overline{\nu}_{\mu} : 4 \pm 2$$
$$B^{+(0)} \to \pi^{+(0)}\mu^{+}\mu^{-} : 26 \pm 3$$
$$B^{+}_{c} \to J/\psi(\mu^{+}\mu^{-})\mu^{+}\nu_{\mu} : 7.2 \pm 0.3$$

 $\Lambda_b \to p\mu^- \overline{\nu_\mu}$ $V/\psi(\mu^+\mu^-)\mu^+ \nu_\mu$

Inputs	mostly from	LHCb:
	moonly morn	

<u>PDG</u>

- <u>LHCb</u> PRL 126 (2021) 081804
- Nature Physics 10 (2015) 1038

<u>JHEP 10 (2015) 034</u> <u>PRD 86 (2012) 114025</u> <u>PRD 100 (2019) 112006</u> LHCb

$$B^0_{(s)} \rightarrow h^+ h'^- \rightarrow \mu^+ \mu^-$$
 background

- B decays to two hadrons (π , K) form a peaking background when both final-state particles are <u>misidentified</u> as muons
- This contribution is estimated by normalising to $B^0 \rightarrow K^- \pi^+$ events:

$$N_{B \to hh \to \mu\mu} = \frac{N_{B^0 \to K^+\pi^-}}{\epsilon_{B^0 \to K^+\pi^-}^{\text{trig}}} \times \frac{1}{f_{B^0 \to K^+\pi^-/B \to hh}} \times \frac{\epsilon_{B^0 \to \mu^+\mu^-}^{\text{trig}}}{\epsilon_{B^0 \to \mu^+\mu^-}^{\text{trig}}} \times \epsilon_{hh \to \mu\mu}$$

- Efficiency corrected $B^0 \rightarrow K^+\pi^-$ yield
- $B^0 \to K^+\pi^-$ contribution within the total $B^0_{(s)} \to h^+h'^-$ PDG
- Trigger efficiency and double misidentification rate (from data)
- Each $B \to hh$ channel is weighted according to its expectation to make the total $B^0_{(s)} \to h^+ h'^- \to \mu^+ \mu^-$
- An alternative estimate is performed on $h\mu$ data (single misidentification) to cross check the result
 - Estimated background events in the high BDT region (BDT ≥ 0.5) :

$$B^0_{(s)} \to h^+ h^{-'-} \to \mu^+ \mu^-: 22 \pm 1$$

Branching fraction measurements

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46}_{-0.43} (stat)^{+0.15}_{-0.11} (sys)) \times 10^{-9} (10.8\sigma)$

• $B^0 \rightarrow \mu^+ \mu^-$ and $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ compatible with 0 signal hypothesis at 1.7 σ and 1.5 σ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10} \text{ (95\% CL)}$ $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu^+ \mu^-} > 4.9 \text{GeV}} < 2.0 \times 10^{-9} \text{ (95\% CL)}$

Matteo Rama

New measurement of $B \rightarrow \mu\mu$ and R_{κ} at LHCb, 6 April 2021

Limits with the CLs method

[J. Phys. G28 (2002) 2693]

$B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime: measurement

Since the expected sensitivity on $A_{\Lambda\Gamma}^{\mu^+\mu^-}$ is low, the effective lifetime measurement introduces some simplifications wrt the BF measurement:

- Tighter mass cut, $m_{\mu^+\mu^-} > 5320$ MeV: mass fit model with $B_s^0 \rightarrow \mu^+\mu^-$ signal + combinatorial
- Looser PID requirement (no misidentified backgrounds) •
- 1. Mass fit on two BDT bins is performed to extract sWeights

[NIM A555 (2005) 356-369]

[LHCb-PAPER-2021-007]

$B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime: results

- which is then fitted with an exponential × acceptance function

The acceptance function (efficiency vs decay time) is tested by measuring the known $B^0 \rightarrow K^+\pi^-$ and • $B_s^0 \to K^+ K^-$ effective lifetimes

$$\tau_{\mu^+\mu^-} = 2.07 \pm 0.29 \pm 0.03$$
 ps

- Result compatible at 1.5σ w and at 2.2 σ with $A_{\Lambda\Gamma}^{\mu^+\mu^-} = -$
- Run 3 data are needed to say more

with
$$A_{\Delta\Gamma}^{\mu^+\mu^-} = 1$$
 (SM, $\tau_{\mu\mu} \sim 1.6 \ ps$)
1 ($\tau_{\mu\mu} \sim 1.4 \ ps$)

$B^+ \rightarrow K^+ l^+ l^-$ and related decays

They occur through $b \to sl^+l^-$ transitions but, in contrast to $B_s^0 \to l^+l^-$ decays, they contain a hadron in ulletthe final state

They offer multitude of observables complementary to $B_{(s)}^0 \rightarrow l^+ l^-$ measurements ullet

Matteo Rama

New measurement of $B \rightarrow \mu\mu$ and R_{κ} at LHCb, 6 April 2021

Flavour anomalies in $b \rightarrow sl^+l^-$ transitions

- Over the past decade we have observed a coherent set of tensions with the SM predictions \bullet
- In $b \rightarrow sl^+l^-$ transitions (FCNC) \bullet
 - **Branching fractions** $B \to K^{(*)}\mu^+\mu^-, B_s \to \phi\mu^+\mu^-, \Lambda_h \to \Lambda\mu^+\mu^-$ Angular analyses ullet $B \to K^{(*)}\mu^+\mu^- \Lambda_h \to \Lambda\mu^+\mu^-$
 - **Lepton flavour universality involving** μ/e **ratios** $B^0 \to K^{(*)0}l^+l^- B^+ \to K^+l^+l^-$

LFU observables as $B^0_{(s)} \rightarrow \mu^+ \mu^-$ decays have very clean theory predictions

 $B \rightarrow K^{(*)}l^+l^-$ branching fractions and angular observables potentially suffer from underestimated hadronic uncertainties

Lepton flavour universality test

- In the SM couplings of gauge bosons to leptons are independent of lepton flavour • \rightarrow Branching fractions differ only by phase space and helicity-suppressed contributions
- Ratios of the form

$$R_{K^{(*)}} := rac{\mathcal{B}(B o K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B o K^{(*)} e^+ e^-)} \stackrel{ ext{SM}}{\cong} 1$$

in SM are free from QCD uncertainties affecting other observables $\rightarrow O(10^{-4})$ uncertainty [JHEP12 (2007) 040]

Up to $O(10^{-2})$ QED corrections [EPJC76, 440 (2016)] lacksquare

Any significant deviation is sign of New Physics.

Lepton flavour universality test

Matteo Rama

New measurement of $B \rightarrow \mu\mu$ and R_{κ} at LHCb, 6 April 2021

R_{K} with the full LHCb dataset

$$R_{K} = \frac{\int_{1.1 \text{ GeV}^{2}}^{6.0 \text{ GeV}^{2}} \frac{\mathrm{d}\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}{\int_{1.1 \text{ GeV}^{2}}^{6.0 \text{ GeV}^{2}} \frac{\mathrm{d}\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}$$

Measurement performed in $1.1 < q^2 < 6.0 \ GeV^2/c^4$

- Previous measurement [PRL122 (2019) 191801] used 5 fb^{-1} of data: ullet
 - $3 f b^{-1}$ of Run 1 + 2 $f b^{-1}$ of Run 2 (2015+2016) •
- This update: ullet
 - Add remaining $4 f b^{-1}$ of Run 2 (2017+2018) ٠
 - $9 f b^{-1}$ in total, 2x the number of B mesons as in previous analysis \bullet
- The analysis strategy is the same as in the previous measurement •
- arxiv:2103.11769, submitted to Nature Physics ۲

Matteo Rama

Electrons vs muons

Electrons lose a large fraction of their energy through Bremsstrahlung in detector material ullet

- Most electrons will emit one energetic photon before the magnet. ullet
 - \rightarrow Look for photon clusters in the calorimeter ($E_T > 75 MeV$) compatible with electron direction before the magnet.
 - \rightarrow Recover brem energy loss by "adding" the cluster energy back to the electron momentum.

Electrons vs muons

Even after the Bremsstrahlung recovery, electrons still have degraded mass and q^2 resolution

Plots from previous result, LHCb [PRL122(2019)191801]

- L0 calorimeter trigger requires higher thresholds, than L0 muon trigger, due to high occupancy. \bullet \rightarrow Use 3 exclusive trigger categories for e^+e^- final states **1**. e^{\pm} from signal-B; **2**. K^{\pm} from signal-B; **3**. rest of event
- Particle ID and tracking efficiency larger for muons than for electrons \bullet

Matteo Rama

Crucial the control of the difference in efficiency between muons and electrons

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(\mu^{+} \mu^{-}))} / \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(e^{+} e^{-}))} =$$

 R_K is measured as a double ratio to cancel out most systematics

- Rare and J/ψ modes share identical selections apart from cut on q^2
- Yields determined from a fit to the invariant mass of the final state particles
- Efficiencies computed using simulation that is calibrated with control channels in data

Matteo Rama

$$\frac{N_{\mu^+\mu^-}^{\mathrm{rare}}\varepsilon_{\mu^+\mu^-}^{J/\psi}}{N_{\mu^+\mu^-}^{J/\psi}\varepsilon_{\mu^+\mu^-}^{\mathrm{rare}}}\times\frac{N_{e^+e^-}^{J/\psi}\varepsilon_{e^+e^-}^{\mathrm{rare}}}{N_{e^+e^-}^{\mathrm{rare}}\varepsilon_{e^+e^-}^{J/\psi}}$$

Selection and backgrounds

- As in our previous measurement, use particle ID requirements and mass vetoes to suppress peaking ulletbackgrounds from exclusive B-decays to negligible levels
 - Backgrounds of e.g $B^+ \rightarrow \overline{D^0} (\rightarrow K^+ e^- \nu) e^+ \overline{\nu}$: cut on $m_{K^+ e^-} > m_{D^0}$ •
 - Mis-ID backgrounds, e.g. $B \to K \pi^+_{(\to e^+)} \pi^-_{(\to e^-)}$: cut on electron PID •
- Multivariate selection to reduce combinatorial background and improve signal significance (BDT) \bullet

- Residual backgrounds suppressed by choice of $m(K^+l^+l^-)$ window ۲
 - $B^+ \rightarrow K^+ I/\psi (e^+ e^-)$
 - Partially reconstructed dominated by $B \rightarrow K^+\pi^-e^+e^-$ decays •
 - Model in fit by constraining their fractions between trigger categories and • calibrating simulated templates from data.

Cross-check our estimates using control regions in data and changing $m(K^+l^+l^-)$ window in fit

Matteo Rama

arxiv:2103.11769

Efficiency calibration

Following identical procedure to our previous measurement, the simulation is calibrated based on control data for the following quantities:

- Trigger efficiency. \bullet
- Particle identification efficiency. \bullet
- B^+ kinematics.
- Resolutions of q^2 and $m(K^+e^+e^-)$ \bullet

Verify procedure through numerous cross-checks.

Cross check: measurement of J/psi

To ensure that the efficiencies are under control, check

$$r_{J/\psi} = rac{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} = 1$$

known to be true within 0.4% [PDG].

 \rightarrow Very stringent check, as it requires direct control of muons vs electrons.

Result:

$$r_{J/\psi} = 0.981 \pm 0.020 \text{ (stat+sys)}$$

Checked that the value of $r_{I/\psi}$ is compatible with unity for new and previous datasets and in all trigger samples.

Matteo Rama

Cross check: $r_{I/\psi}$ vs kinematics

Test efficiencies are understood in all kinematic regions by checking $r_{I/\psi}$ is flat in all variables examined.

Flatness of $r_{I/\psi}$ 2D plots gives confidence that efficiencies are understood across the entire decay phase space.

 \rightarrow If take departure from flatness as genuine rather than fluctuations (accounting for rare-mode kinematics), bias expected on R_K is 0.1%

Matteo Rama

New measurement of $B \rightarrow \mu\mu$ and R_{κ} at LHCb, 6 April 2021

Cross check: Measurement of $R_{\psi(2S)}$

Measurement of the double ratio

$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(\mu^+ \mu^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^-))} \Big/ \frac{\mathcal{B$$

- Independent validation of double-ratio procedure at q^2 away from J/ψ
- Result well compatible with unity:

$$R_{\psi(2S)} = 0.997 \pm 0.011$$
 (stat+sys)

 \rightarrow can be interpreted as world's best LFU test in $\psi(2S) \rightarrow l^+l^-$

Matteo Rama

Systematic uncertainties

Dominant sources: ~1%

- Choice of fit model
 - Associated signal and partially reconstructed background shape \bullet
- Statistics of calibration samples \bullet
 - Bootstrapping method that takes into account correlations between calibration samples and final measurement

Sub-dominant sources: ~0.1%

- Efficiency calibration
 - \rightarrow Dependence on trigger biases
 - \rightarrow Precision of the q^2 and $m(K^+e^+e^-)$ smearing factors
 - \rightarrow Inaccuracies in material description in simulation

Total relative systematic of 1.5% in the final R_K measurement \rightarrow Expected to be statistically dominated

Measurement of R_K

 R_K is extracted as a parameter from an unbinned maximum likelihood fit to $m(K^+\mu^+\mu^-)$ and $m(K^+e^+e^-)$ distributions in $B^+ \to K^+ l^+ l^-$ and $B^+ \to J/\psi(l^+ l^-)K^+$ decays

Correlated uncertainties on efficiency ratios included as multivariate constraint in likelihood lacksquare

Matteo Rama

New measurement of $B \rightarrow \mu\mu$ and R_{κ} at LHCb, 6 April 2021

arxiv:2103.11769

 $R_{K} = 0.846^{+0.042}_{-0.039}(stat)^{+0.013}_{-0.012}(sys)$

- p-value under SM hypothesis: 0.0010
 → evidence of LFU violation at 3.1 σ
- Compatibility with the SM obtained by integrating the profiled likelihood as a function of R_K above 1
 - Taking into account the 1% theory uncertainty on $R_K [EPJC76(2016)8,440]$

Measurement of R_K with full Run 1 and Run 2 dataset

Measurement of R_K with full Run 1 and Run 2 dataset

$$R_K = 0.846^{+0.042}_{-0.039}(stat)^{+0.013}_{-0.012}(sys)$$

- p-value under SM hypothesis: 0.0010 \rightarrow evidence of LFU violation at 3.1 σ
- Compatibility with the SM obtained by integrating the profiled likelihood as a function of R_{K} above 1
 - Taking into account the 1% theory uncertainty on R_K [EPJC76(2016)8,440]
- Using R_K and previous measurement of $BF(B^+ \rightarrow K^+ \mu^+ \mu^-)$ [JHEP06(2014)133] determine $BF(B^+ \rightarrow K^+e^+e^-)$.
- It suggests that electrons are more SM than muons

$$\frac{dB(B^+ \to K^+ e^+ e^-)}{dq^2} = \left(28.6^{+1.5}_{-1.4}(stat) \pm 1.4(sys)\right) \times 10^{-9} c^4 / GeV^2$$

Next years: LHCb upgrade-I and upgrade-II phases

LHC Run 3 schedule shifted by +1yr

 $L_{LHCb(Run\,3)} = 4.4 \times 10^{32} \ cm^{-2} s^{-1} \rightarrow 2 \times 10^{33} cm^{-2} s^{-1}$

Matteo Rama

New measurement of $B \rightarrow \mu\mu$ and R_{κ} at LHCb, 6 April 2021

$B \rightarrow \mu\mu$ uncertainties predictions

LHC Run 3 schedule shifted by +1yr

LHCb	9 fb ⁻¹ (r1+r2)	23 fb ⁻¹
$BF(Bs \rightarrow \mu\mu)$	$\pm 0.46 \times 10^{-9}$	$\pm 0.30 \times 10^{-9}$
$\tau(Bs \to \mu\mu)$	±0.29 ± 0.03 ps	<u>+</u> 0.16 ps
$\frac{BF(B^0 \to \mu\mu)}{BF(B_s^0 \to \mu\mu)}$	65%	34%
CMS	61 fb ⁻¹ (r1+2016)	300 fb ⁻¹
$BF(Bs \rightarrow \mu\mu)$	$\pm 0.70 \times 10^{-9}$	$\pm 0.44 \times 10^{-9}$
$\tau(Bs \to \mu\mu)$	±0.51 ± 0.09 ps	<u>+</u> 0.15 ps
$\frac{BF(B^0 \to \mu\mu)}{BF(B^0_s \to \mu\mu)}$	100%	48%
ATLAS	51 fb ⁻¹ (r1+2015/16)	
$BF(Bs \rightarrow \mu\mu)$	$\pm 0.75 \times 10^{-9}$	

 $BF(B^0 \to \mu\mu) < 2.1 \times 10^{-10}$

2029 2030 2031

 $R_{K^{(*)}}$ uncertainties predictions

LHC Run 3 schedule shifted by +1yr

		2021	2022	2023	2024	2025	2026	2027	2028
	LHC		Run 3		LS	53			
	HL-LH	С			LS	53			Run 4
	<u>LHCb</u>		Upgrade	la				U	pgrade I
LHCb	9	9 fb ⁻¹		23	fb-1				
$\sigma(R_K)$	С	0.041		0.0	25				
$\sigma(R_{K^{*0}})$	0.1	l0 (Rur	<i>ı</i> 1)	0.0	31				
Belle II					5 ab ⁻¹				
$\sigma(R_K)$					0.11				
$\sigma(R_{K^{*0}})$)				0.09				

NB: The above R_K and $R_{K^{*0}}$ uncertainties refer to $1 < q^2 < 6 \ GeV^2/c^4$

CMS in 2018 has recorded ~ 1.2×10^{10} trigger-unbiased b decays (<u>B parking</u>), which allows to select $B \rightarrow K^{(*)}e^+e^-$ decays otherwise not triggerable. \rightarrow CMS expected to enter the game (future projections N/A to my knowledge)

2029 2030 2031 ...

Conclusions

- Updated $B_s^0 \rightarrow \mu^+ \mu^-$ and R_K measurements with the full Run 1 + Run 2 dataset of LHCb. Both provide lacksquaretheoretically very clean observables that test SM and constrain new physics scenarios.
- Most precise single-experiment measurement of $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ with ~ 15% error. No evidence of ullet $B^0 \rightarrow \mu^+ \mu^-$ signal: evidence in Run 3 will rely on hadron misID performance. Most precise measurement of $\tau_{\mu^+\mu^-}$, but still not able to exclude portions of the $A_{\Lambda\Gamma}^{\mu^+\mu^-}$ physical region.
- Most precise measurement of R_{κ} confirms and strengthens tension with SM lepton flavour universality ullethypothesis. Many more $b \rightarrow sl^+l^-$ measurements underway with the full LHCb dataset.
- \times 3 more data in Run 3 starting next year and much more foreseen in Run4&Run5.
- Input from CMS, ATLAS and Belle II will be important

BACKUP

Matteo Rama

New measurement of $B{\rightarrow}\mu\mu$ and R_{K} at LHCb, 6 April 2021

$B \rightarrow \mu\mu$ low BDT region

$B \rightarrow \mu\mu$ high BDT region

$B_s^0 \to K^+K^-$ lifetime measurement

$B^0 \rightarrow K^+ \pi^-$ lifetime measurement

$B \rightarrow \mu\mu$ measurement history

$B \rightarrow \mu \mu$ BDT definition

- Long track isolation
- VELO track isolation
- B_ENDVERTEX_CHI2: vertex χ^2 of the *B* candidate
- B_IPS_OWNPV: impact parameter significance of the B candidate with respect to the primary vertex
- B_ACOSDIRA_OWNPV: angle between the *B* direction and the vector joining the primary and secondary vertices
- mu_DeltaR: $\sqrt{\Delta\phi^2 + \Delta\eta^2}$, where $\Delta\phi$ and $\Delta\eta$ are the azimuthal angle and pseudorapidity differences between the two muons
- mu_MINIPS: smallest value among the muon impact parameter significance of the two muons with respect to the primary vertex associated to the $B^0_{(s)} \to \mu^+ \mu^-$ candidate

50

$B \rightarrow K l^+ l^-$ events split by trigger categories

LHCb perspectives

Table 7.2: Estimated yields of $b \to se^+e^-$ and $b \to de^+e^-$ processes and the statistical uncertainty on R_X in the range $1.1 < q^2 < 6.0 \,\mathrm{GeV^2/c^4}$ extrapolated from the Run 1 data. A linear dependence of the $b\overline{b}$ production cross section on the pp centre-of-mass energy and unchanged Run 1 detector performance are assumed. Where modes have yet to be observed, a scaled estimate from the corresponding muon mode is used.

Yield	Run 1 result	$9{\rm fb}^{-1}$	$23{\rm fb}^{-1}$	$50{\rm fb}^{-1}$	$300{\rm fb}^{-1}$
$B^+ \rightarrow K^+ e^+ e^-$	254 ± 29 [274]	1120	3300	7500	46000
$B^0 \rightarrow K^{*0} e^+ e^-$	111 ± 14 [275]	490	1400	3300	20000
$B_s^0 \rightarrow \phi e^+ e^-$	—	80	230	530	3300
$\Lambda_b^0 \rightarrow p K e^+ e^-$	_	120	360	820	5000
$B^+ \rightarrow \pi^+ e^+ e^-$	_	20	70	150	900
R_X precision	Run 1 result	$9 {\rm fb}^{-1}$	23fb^{-1}	50fb^{-1}	300fb^{-1}
		010	2010	0010	30010
R_K	$0.745 \pm 0.090 \pm 0.036$ 274	0.043	0.025	0.017	0.007
$\begin{array}{c} R_K \\ R_{K^{*0}} \end{array}$	$\begin{array}{c} 0.745 \pm 0.090 \pm 0.036 & [274] \\ 0.69 \pm 0.11 \pm 0.05 & [275] \end{array}$	0.043 0.052	0.025 0.031	0.017 0.020	0.007 0.008
$egin{array}{c} R_K \ R_{K^{st 0}} \ R_\phi \end{array}$	$\begin{array}{c} 0.745 \pm 0.090 \pm 0.036 \\ 0.69 \pm 0.11 \pm 0.05 \end{array} \begin{array}{c} 274 \\ 275 \end{array}$	0.043 0.052 0.130	0.025 0.031 0.076	0.017 0.020 0.050	0.007 0.008 0.020
$egin{array}{c} R_K \ R_{K^{st 0}} \ R_\phi \ R_{pK} \end{array}$	$\begin{array}{c} 0.745 \pm 0.090 \pm 0.036 & \boxed{274} \\ 0.69 \pm 0.11 \pm 0.05 & \boxed{275} \\ \end{array}$	0.043 0.052 0.130 0.105	0.025 0.031 0.076 0.061	$\begin{array}{r} 0.017 \\ 0.020 \\ 0.050 \\ 0.041 \end{array}$	0.007 0.008 0.020 0.016

Physics case for an LHCb Upgrade II arxiv:1808.08865

LHCb perspectives

Table 10.1: Summary of prospects for future measurements of selected flavour observables for LHCb, Belle II and Phase-II ATLAS and CMS. The projected LHCb sensitivities take no account of potential detector improvements, apart from in the trigger. The Belle-II sensitivities are taken from Ref. [608].

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins		11100 2020	Dono II	o portado 11	
$\frac{2}{R_{\kappa}} \frac{1}{(1 < q^2 < 6)} \text{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	_
R_{K^*} $(1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 275	0.031	0.032	0.008	_
$R_{\phi}, R_{pK}, R_{\pi}$		0.08, 0.06, 0.18	_	0.02, 0.02, 0.05	_
CKM tests					
γ with $B^0 \rightarrow D^+ K^-$	$\binom{+17}{22}^{\circ}$ [136]	4°	_	1°	_
γ , all modes	$\binom{-22}{+5.0}^{\circ}$ 167	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 609	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad	14 mrad	_	4 mrad	22 mrad 610
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad	35 mrad	_	$9 \mathrm{mrad}$	·
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	$39 \mathrm{mrad}$	_	11 mrad	Under study 611
a_{sl}^s	33×10^{-4} 211	$10 imes 10^{-4}$	_	$3 imes 10^{-4}$	
$ V_{ub} / V_{cb} $	6% 201	3%	1%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% 264	34%	_	10%	21% 612
$\tau_{B^0 \rightarrow \mu^+ \mu^-}$	22% 264	8%	_	2%	نے
$S_{\mu\mu}^{a}$		_	_	0.2	_
$b \rightarrow c \ell^- \bar{\nu}_l$ LUV studies					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 220	0.071	_	0.02	_
Charm					
$\overline{\Delta A_{CP}(KK - \pi\pi)}$	8.5×10^{-4} [613]	$1.7 imes10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes10^{-5}$	_
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} 240	$4.3 imes 10^{-5}$	$3.5 imes10^{-4}$	$1.0 imes 10^{-5}$	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	$3.2 imes 10^{-4}$	$4.6 imes 10^{-4}$	$8.0 imes10^{-5}$	_
$x \sin \phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm s}^0\pi\pi)~1.2\times10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	_
			- 1af *		

New measurement of $B \rightarrow \mu\mu$ and R_{K} at LHCb, 6 April 2021

Matteo Rama

Physics case for an LHCb Upgrade II arxiv:1808.08865

Belle II perspectives

Table 5: Expected errors on several selected observables in radiative and electroweak penguin B decays. Note that 50 ab^{-1} projections for B_s decays are not provided as we do not expect to collect such a large $\Upsilon(5S)$ data set.

Observables	Belle	Bel	le II
	(2017)	5 ab^{-1}	50 ab^{-1}
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu})$	$<40 imes10^{-6}$	25%	9%
$\mathcal{B}(B \to K^+ \nu \overline{\nu})$	$<19\times10^{-6}$	30%	11%
$A_{CP}(B \to X_{s+d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1.5	0.5
$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07
$A_{FB}(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 3.5 \ \text{GeV}^2/c^4)$	26%	10%	3%
$Br(B \rightarrow K^+ \mu^+ \mu^-)/Br(B \rightarrow K^+ e^+ e^-)$	28%	11%	4%
$(1 < q^2 < 6 \text{ GeV}^2/c^4)$			
$Br(B \rightarrow K^{*+}(892)\mu^+\mu^-)/Br(B \rightarrow$	24%	9%	3%
$K^{*+}(892)e^+e^-) \ (1 < q^2 < 6 \ \text{GeV}^2/c^4)$			
$\mathcal{B}(B_s \to \gamma \gamma)$	$< 8.7 \times 10^{-6}$	23%	_
$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	—	< 0.8	_

 $BF(B^0 \to \mu\mu)_{BABAR} < 5.2 \times 10^{-8} @ 320 fb^{-1} \rightarrow < 4 \times 10^{-9} @ 50 ab^{-1}$ Phys.Rev.D77 (2008) 032007

The Belle II Physics Book, arxiv:1808.10567

CMS perspectives

Table 3: Estimated analysis sensitivity for different integrated luminosities. Columns in the table, from left to right: the total integrated luminosity, the median expected number of reconstructed B_s^0 and B^0 mesons, the total uncertainties on the $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ branching fractions, the range of the significance of B^0 observation (the range indicates the $\pm 1\sigma$ of the distribution of significance) and the statistical uncertainty on the $B_s^0 \rightarrow \mu^+\mu^-$ effective lifetime.

\mathcal{L} (fb ⁻¹)	$N(B_s)$	$N(B^0)$	$\delta \mathcal{B}(B_s \to \mu \mu)$	$\delta {\cal B}(B^0 o \mu \mu)$	$\sigma(B^0\to\mu\mu)$	$\delta[\tau($
300	205	21	12%	46%	$1.4 - 3.5\sigma$	0.15
3000	2048	215	7%	16%	$6.3 - 8.3\sigma$	0.05

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH#Projections

Matteo Rama

New measurement of $B \rightarrow \mu\mu$ and R_{K} at LHCb, 6 April 2021

B_s)](stat-only) ps ps CMS-PAS-FTR-18-013

SuperKEKB luminosity projection

• Peak luminosity projections:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH#Projections

New measurement of $B \rightarrow \mu\mu$ and R_{K} at LHCb, 6 April 2021

Matteo Rama

From Filippo Dattola, Moriond EW (backup slide)

LHCb upgrade plan

LHCb Phase-I upgrade ongoing now during LS2 for Run3 and Run4

- full software trigger and readout all detectors at 40MHz
- replace tracking detectors + PID + VELO and *L* ~ 2 x 10³³ sec⁻¹ cm⁻²
- Consolidate PID, tracking and ECAL during LS3

LHCb Phase-II upgrade during LS4 beyond Run4

Use new detector technologies + timing to increase ℒ~ 1.5 x 10³⁴ sec⁻¹ cm⁻²

ICHEP2020, 28 July - 6 August 2020

Federico Alessio, CERN

6