Do available cosmological data favor neutrino mass AND COUPLING BETWEEN DARK MATTER & DARK ENERGY ?

How to get rid of ΛCDM

References:

- * LVG, S. Bonometto & Colombo L.P.L. arXiv:0810.0127 & NewAstr. 14 (2009) 435 *"Higher neutrino mass allowed if CDM & DE are coupled"* * LVG Kristiansen LP, Colombo LPL, Mainini P, & S. Bonor
- * LVG, Kristiansen J.R., Colombo L.P.L., Mainini R. & S. Bonometto arXiv: 0902.2711 & JCAP 04 (2009) 2007
 "Do WMAP data favor neutrino mass & a coupling between CDM & DE?"
- * Kristiansen J.R., LVG, Colombo L.P.L., Mainini R. & S. Bnometto arXiv: 0902.2737 & New Astr. accepted "Coupling between CDM & DE from neutrino mass experiments"
- * S.Bonometto, LVG, Kristiansen J.R., Colombo L.P.L., Mainini R. arXiv: 0911.3486 and Proc. 'Invisible Universe International Conference' Paris 2009 "Do WMAP data favor neutrino mass & a coupling between CDM & DE?"

Giuseppe La Vacca - Dip. Di Fisica G. Occhialini - Universita' Milano-Bicocca

Frascati, 23 Giugno 2010

Summary

- v mass laboratory constraints
- v mass cosmology constraints
- Why & how improving ΛCDM: dynamical DE & coupled DE vs. fine tuning & coincidence
- Limits on v mass in Mildly Mixed Coupled (MMC) cosmologies

Spectral effects of coupling & v mass not just compensating Their sum favors MMC in respect to ΛCDM

Even more when using recent WMAP7 outputs
In case of experimental mass detection
DM-DE coupling performs much better than w<-1

v-mass experiments

solar, reactor expe	riments $\Delta m_{2l}^2 \approx 3$	8×10^{-5}	eV^2
atmospheric, accel	beam $ \Delta m_{3l}^2 \approx$	3×10	3 e V ²
MAINZ & TROISZK (1997 - 2005)	<pre>K m(ν_e) < 2-3 e</pre>	eV	
KATRIN	sensitivity 0.2	2 eV	
(from 2012)		τ/γ>	τ / γ =
Heidelberg-Moskow	76 Ge \rightarrow 76 Se	1.9e25	(0.69-4.18)e25 Klapdor et al.
Cuoricino / Cuore	¹³⁰ Te \rightarrow ¹³⁰ Xe	2.9e24	
NEMO	^{&} Se → ^{&} Mo		
GERDA	To repeat Heidelberg-Moskow		
$\left M_{nucl}\right ^2 m_v^2$	m(v _e) =	= (0.1-0.9	9) eV (3σ)
	solar, reactor expendence of atmospheric, accel MAINZ & TROISZE (1997 - 2005) KATRIN (from 2012) Heidelberg-Moskow Cuoricino / Cuore NEMO GERDA $ M_{nucl} ^2 m_v^2$	solar, reactor experiments $\Delta m_{21}^2 \approx 8$ atmospheric, accel. beam $ \Delta m_{31}^2 \approx$ MAINZ & TROISZK $m(v_e) < 2-3 e$ (1997 - 2005) KATRIN sensitivity 0.3 (from 2012) Heidelberg-Moskow $\pi Ge \rightarrow \pi Se$ Cuoricino / Cuore $10 \text{ Te} \rightarrow 10 \text{ Xe}$ NEMO $\Re Se \rightarrow \Re Mo$ GERDA To repeat Heidelberg-Moskow $M m_{nucl} ^2 m_v^2 m(v_e) =$	solar, reactor experiments $\Delta m_{21}^2 \approx 8 \times 10^{-5}$ atmospheric, accel. beam $ \Delta m_{31}^2 \approx 3 \times 10^{-5}$ MAINZ & TROISZK $m(v_e) < 2-3 \text{ eV}$ (1997 - 2005) KATRIN sensitivity 0.2 eV (from 2012) $\tau/y >$ Heidelberg-Moskow π Ge $\rightarrow \pi$ Se 1.9e25 Cuoricino / Cuore 10 Te $\rightarrow 10$ Xe 2.9e24 NEMO $\text{@Se} \rightarrow \text{@Mo}$ GERDA Heidelberg-Moskow $ M_{nuc} ^2 m_v^2 \qquad m(v_e) = (0.1-0.9)$

+ BAO data from 2dFGRS and SDSS

e.g.,

Eisenstein et al., 2005 Percival et al., 2009

2dF galaxy redshift survey

Other priors:

 $H_o = 74 \pm 3.6$ Riess et al. (2009) $\Omega_b h^2 = 0.022 \pm 0.002$

Burles, Nollet, Turner, 2001, PRD 63 Cyburt, 2004, PRD 70 Serpico et al., 2004, JCAP 0412

 ΛCDM assume $\Omega = \Sigma \Omega_i = 1, w = -1$ (negligible neutrino mass)

Upper limits on neutrino mass

Mν = Σmν (95% CL)	w = -1	w = const ≠ -1
WMAP	1.3 eV	1.6 eV
WMAP+BAO+HST	0.58 eV	1.3 eV
WMAP+LRG+HST	0.44 eV	0.71 eV
WMAP+BAO+SNIa	0.71 eV	0.91 eV

Upper limits on $M_v = \Sigma m_v$ (95% C.L.)

$$\Omega_v h^2 = \frac{\sum m_v}{93 \,\mathrm{eV}}$$

Λ CDM problems

Scale dependence of different cosmic components in a Λ CDM model

- <u>Coincidence paradox</u>: why now? if earlier... no structure would form
- Vacuum <u>fine tuning paradox</u> ~1:10⁵⁶ at EW transition

tracker solutions:

NO dependence on initial condition on the field

 $\Gamma = \frac{VV_{,\varphi\varphi}}{\left(V_{,\varphi}\right)^2} > 1$

Fine tuning eased (may be...) Coincidence still a problem

Coupled DE case

Wetterich C. 1995, Amendola L., 2000, etc.

Energy flow from CDM to DE:

$$T^{(de)}_{\nu;\mu}^{\mu} = + CT^{(c)}\phi_{,\nu} \qquad \beta = (3/16\pi)^{1/2}m_pC$$

$$T^{(c)}_{\nu;\mu}^{\mu} = - CT^{(c)}\phi_{,\nu} , \qquad \beta = (3/16\pi)^{1/2}m_pC$$

High z :

DE density is purely kinetical dilutes rapidly, but it continues to be fed

Low z :

DE field attains values making the potential term dominant: Then it overcomes matter density and causes cosmic acceleration

$$\ddot{\phi} + 2\frac{\dot{a}}{a}\dot{\phi} + a^2V'_{\phi} = + Ca^2\rho_c$$
$$\dot{\rho}_c + 3\frac{\dot{a}}{a}\rho_c = - C\rho_c\dot{\phi}$$

Different approaches:

- * Neutrino DE (Wood-Vasey et al arxiv:0701040, Hung P.Q. arxiv:0010126, Blatt J.R. et al:0812.1895v1, etc. But see: Bjaelde & Hannestad, arXiv:0806.2146v1)
- * Coupling with T(de): Gavela M.B. et al, arxiv:0901.1611 (focused on v mass constraints)

Coincidence eased as well

Variable state parameter

in dDE & cDE models

MMC models: Matter fluctuations – transfer functions

(Mildly Mixed Coupled)

ANTISYMMETRIC EFFECTS OF NEUTRINO MASS & CDM-DE COUPLING

(Other parameters fixed)

MMC models: CMB angular fluctuation spectrum

(Mildly Mixed Coupled)

ANTISYMMETRIC EFFECTS OF NEUTRINO MASS & CDM-DE COUPLING

Same parameter values as in the previous slide

parar for va	Best-fi neter v rious n	t /alues nodels	
modifi & mo	ied COS odified +	SMOMC CAMB	
Likelih from	nood so WMAP	oftware team	

WMAP5, 2dFGRS, H0, ecc.

D /	$\Lambda CDM + \nu$'s		w = const.	$cRP + \nu$'s	$cSUGRA + \nu$'s
Parameter	WMAP only	all data	all data	all data	all data
10^{2} cm	2.244	2.258	2.247	2.260	2.260
$10 \omega_b$	± 0.066	\pm 0.061	± 0.062	± 0.061	± 0.065
	0.1156	0.1098	0.1132	0.1039	0.1042
ωc	± 0.0078	± 0.0040	± 0.0069	± 0.0062	± 0.0084
$10^2\theta$	1.0401	1.0401	1.0402	1.0401	1.0406
	± 0.0030	± 0.0030	± 0.0030	± 0.0029	± 0.0030
	0.007				0.000
au	0.085	0.087	0.085	0.087	0.088
	± 0.017	± 0.017	± 0.017	± 0.016	± 0.017
$M_{-}(-V)$					
M_{ν} (eV) (05% CI)	< 1.20	< 0.66	< 0.94	< 1.13	< 1.17
(95% C.L.)					
в					
(95% CL)	_	_	_	$<\!0.17$	< 0.18
(5576 6.11.)					
$\log_{10}(\Lambda/\text{GeV})$					
(95% C.L.)	_	_	_	< -4.2	< 6.3
()					
	0.955	0.962	0.958	0.969	0.970
n_s	± 0.017	± 0.014	± 0.015	± 0.015	± 0.018
$l_{-}(10104)$	3.053	3.045	3.049	3.055	3.057
$\ln(10^{-1}A_s)$	± 0.043	$\pm \ 0.040$	± 0.040	± 0.040	± 0.041
<i>σ</i> ₂	0.691	0.713	0.711	0.723	0.717
0.8	± 0.075	± 0.056	± 0.059	± 0.062	± 0.069
H _o (km/s/Mpc)	67.0	70.1	69.7	71.8	71.9
110 (km/s/mpc)	± 4.4	± 2.1	± 2.2	± 2.5	± 2.7
a 1 / A	1000.05	1.105 51			
$-2 \ln(\mathcal{L})$	1329.39	1407.25	1407.38	1407.44	1407.33

Table 2: Best fit values and $1-\sigma$ error bars. In all fits we allow for ν masses. The first 9 lines concern primary parameters. Only upper limits on M_{ν} , β and Λ are shown. These variables are discussed more thoroughly in forthcoming 2–D plots. Likelihood values are almost model independent.

SUGRA

RP

+Klapdor et al. neutrino mass prior $m(v_e) \approx (0.1 \div 0.9) \text{ eV} (3\sigma)$

MMC vs wCDM+ M_{y}

Density parameter evolution in MMC SUGRA models

Some conclusions

- Λ CDM fits available data: once Λ CDM was just a counter-example for simulations...
- Coupled DE models ease Λ CDM paradoxes, but... do not fit data
- Coupled DE + neutrino mass fit "better" than ΛCDM
- "signal" is O(1 sigma) ...
- But... KATRIN detection of neutrino mass would apparently imply also CDM-DE coupling
- If so: also KATRIN would detect a signal on neutrino mass

Work in progress:

- 1. New algorithm for MCMC with new data release for various observables: WMAP7, SDSS, extended SN catalogue, more stringent HST prior
- 2. Testing how far PLANCK will be constraining
- Build mock data for MMC models
- Deduce model parameter by using PLANCK "outputs"
- Consider cosmic shear observables (EUCLID project)
- How more constraining can they be in fixing
 - DE state equation
 - neutrino masses (?)
- 3. Probing lower scales: spherical overdensity collapse

Thanks for your attention!

SUGRA potential – all data (WMAP5 + LSS + SNIa)

Ratra-Peebles potential – all data (WMAP5 + LSS + SNIa)

