Sommerfeld enhancements in the MSSM

Andrzej Hryczuk

Scuola Internazionale Superiore di Studi Avanzati (SISSA) and INFN, Trieste

23 June 2010

with R. Iengo and P. Ullio, in preparation

Andrzej Hryczuk

Sommerfeld enhancements in the MSSM

Frascati, 23 June 2010 1/16

э

Introduction

Thermal relic density of dark matter particles is determined by the annihilation cross section at the about freeze-out temperature

$$\Omega h^2 \approx 0.1 \left(\frac{3 \cdot 10^{-26} cm^3 s^{-1}}{\langle \sigma_A \mathbf{v} \rangle_{T_{\text{f.o.}}}} \right)$$

[Kolb, Turner]

Introduction

Indirect detection depends on the same cross section, but for low velocity WIMPs in DM halos

flux ~ $n^2 \langle \sigma_A \mathbf{v} \rangle_{\text{DM halo}}$,

and to explain e^+/e^- puzzle we need

 $\langle \sigma_A \mathbf{v} \rangle_{\text{DM halo}} \gg \langle \sigma_A \mathbf{v} \rangle_{T_{\text{f.o.}}}$

[Grasso et al. '09]

How one can solve this? \Rightarrow Sommerfeld enhancement!

Sommerfeld effect - a classical analogy

[Arkani-Hamed et al. '09]

Without gravity the cross section: $\sigma_0 = \pi R^2$

With gravity it is enhanced: $\sigma = \pi b_{max}^2$ and

$$\sigma = \sigma_0 \left(1 + \frac{\mathrm{v}_{esc}^2}{\mathrm{v}^2} \right)$$

where $v_{esc} = \sqrt{2G_N M/R}$ is the escape velocity.

For $v \ll v_{esc}$ there is large enhancement!

Sommerfeld enhancement

Sommerfeld enhancement (effect) is a non-relativistic effect changing the cross section due to the wave function distorsion by a long range potential.

Conditions for significant enhancement:

slow incoming particles

 m_χ - mass of DM particle, m_ϕ - mass of force carrier $\phi,$ v - CM velocity, $\alpha=g^2/(4\pi)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Sommerfeld effect and dark matter

There has been plenty of work done to study this effect in context of

- ▶ indirect detection signals [Arkani-Hamed et al. '09, Chen et al. '09...]
- ▶ thermal relic density [Hisano et al. '06, Feng et al. '10,...]
- ► constraints from other data [Buckley et al. '09, Zavala et al. '10,...]

Common feature: new force in dark sector mediated by $m_{\phi} \sim 1 \text{ GeV}$ particle

 \rightarrow to explain the cosmic flux anomalies (PAMELA, ATIC, etc.), but...

Andrzej Hryczuk

(E) < E)</p>

Sommerfeld enhancement without dark force

... even before the recent boom there have been works on such an effect coming only from gauge bosons

 \rightarrow for the pure wino or pure higgsino in MSSM [Hisano et al. '03, '05]

 \rightarrow for the Minimal Dark Matter model [Strumia et al. '07]

Effect not so big as in models with dark force, but stil important and much less speculative! However, it was studied in a simple models. What about more realistic setups?

Andrzej Hryczuk

In the MSSM:

- Dark matter \rightarrow lightest neutralino χ_1^0
- ▶ possible intermediate bosons: $\gamma, W^{\pm}, Z^0, h_1^0, h_2^0, H^+$

Andrzej Hryczuk

3

In the MSSM:

- Dark matter \rightarrow lightest neutralino χ_1^0
- possible intermediate bosons:

 $\gamma_{not \ \gamma^0}, W^{\pm}, Z^0, h_1^0, \underline{h_2^0}, H^+$ not χ_1^0

3

In the MSSM:

- Dark matter \rightarrow lightest neutralino χ_1^0
- possible intermediate bosons:

$$\underbrace{\gamma}_{not \ \chi_1^0}, W^{\pm}, Z^0, h_1^0, \underbrace{h_2^0, H^+}_{heavy}$$

It would seem that to have a seizable effect

$$\frac{1}{m_W} \gtrsim \frac{1}{\alpha m_\chi} \qquad \Rightarrow \qquad m_\chi \gtrsim 2.3 \text{ TeV}$$

Andrzej Hryczuk

3

In the MSSM:

- Dark matter \rightarrow lightest neutralino χ_1^0
- possible intermediate bosons:

$$\underbrace{\gamma}_{not \ \chi_1^0}, W^{\pm}, Z^0, h_1^0, \underbrace{h_2^0, H^+}_{heavy}$$

It would seem that to have a seizable effect

$$\frac{1}{m_W} \gtrsim \frac{1}{\alpha m_\chi} \qquad \Rightarrow \qquad m_\chi \gtrsim 2.3 \text{ TeV}$$

Moreover, if $\delta m = m_{\chi^+} - m_{\chi}$ is too large then the effect coming from

is very small \rightarrow no enhancement at all...?

... but

▶ as soon as one can produce nearly on-shell χ^+ , i.e. when $\mathcal{E} \approx 2\delta m$:

► for relic density also co-annihilations are important \rightarrow one needs to compute Sommerfeld effect also for incoming $\chi^+\chi^-$, $\chi^+\chi_1^0$, ...

 \Rightarrow co-annihilation σ 's can be strongly enhanced or suppressed

Our approach

The idea is to compute separately every possible interaction potential.

 $x = p \cdot r, p$ - CM momentum

伺下 イヨト イヨト

Note that

 $\bar{\Psi}^i(z)\gamma_5\Psi^j(w)|0>-$ singlet spin state, $\bar{\Psi}^i(z)\vec{\gamma}\Psi^j(w)|0>-$ triplet spin state,

The full potential with $c_{ij,i'j'}(\phi)$ can be computed from transition $ij \to i'j'$. Using general notation γ for both cases and $\Gamma = 1.5^3 \gamma t_{10} \gamma t_{10} \gamma t_{10}$

$$\frac{1}{2!} \int [dx] [dy] \sum_{i,i'} \left(\bar{\Psi}^{i}(x) \Gamma \Psi^{i'}(x) + h.c. \right) \left(\bar{\Psi}^{i}(y) \Gamma \Psi^{i'}(y) + h.c. \right) G_{\phi}(|\vec{x} - \vec{y}|) + \int [dz] [dw] \underbrace{N_{ij} \bar{\Psi}^{i}(z) \gamma \Psi^{j}(w) |0 > \Phi^{ij}(z, w) =}_{initial \ state} = \int [dx] [dy] \underbrace{N_{i'j'} \bar{\Psi}^{i'}(x) \gamma \Psi^{j'}(y) |0 > V_{\phi}^{ij,i'j'}(|\vec{x} - \vec{y}|) \Phi^{ij}(x, y),}_{final \ state}$$

where:

 N_{ij} - normalization of ij state, $G_{\phi}(|\vec{x} - \vec{y}|) - \phi$ boson propagator, $\Phi^{ij}(x, y) - ij$ state wave function

A 3 >

Note that

 $\bar{\Psi}^i(z)\gamma_5\Psi^j(w)|0>-$ singlet spin state, $\bar{\Psi}^i(z)\vec{\gamma}\Psi^j(w)|0>-$ triplet spin state,

The full potential with $c_{ij,i'j'}(\phi)$ can be computed from transition $ij \to i'j'$. Using general notation γ for both cases and $\Gamma = 1, \gamma^5, \gamma^{\mu}, \gamma^{\mu}\gamma^5$

$$\frac{1}{2!} \int [dx] [dy] \underbrace{\sum_{i,i'} \left(\bar{\Psi}^{i}(x) \Gamma \Psi^{i'}(x) + h.c. \right) \left(\bar{\Psi}^{i}(y) \Gamma \Psi^{i'}(y) + h.c. \right)}_{interactions} G_{\phi}(|\vec{x} - \vec{y}|) \cdot \int [dz] [dw] \underbrace{N_{ij} \bar{\Psi}^{i}(z) \gamma \Psi^{j}(w) | 0 > \Phi^{ij}(z, w)}_{initial \ state} = \int [dx] [dy] \underbrace{N_{i'j'} \bar{\Psi}^{i'}(x) \gamma \Psi^{j'}(y) | 0 > V_{\phi}^{ij,i'j'}(|\vec{x} - \vec{y}|) \Phi^{ij}(x, y),}_{final \ state}$$

where:

 N_{ij} - normalization of ij state, $G_{\phi}(|\vec{x} - \vec{y}|) - \phi$ boson propagator, $\Phi^{ij}(x, y) - ij$ state wave function

< 3 > <

Summary of our approach

Remarks:

- force can be attractive or repulsive,
- coefficients c_{ij,i'j'}(φ) depend on φ but also on the incoming and outgoing states (Dirac or Majorana, identical or not)
- the effect is different for the incoming particles being in the singlet or triplet spin state.

Short summary of our approach:

- 1. We took every possible initial state ij
- 2. Computed coefficients $c_{ij,i'j'}(\phi)$ and potential $V^{\phi}_{ij,i'j'}(x)$
- 3. Wrote a code to solve the set of coupled Schrödinger equations numerically
- 4. Implemented it into DarkSUSY to use the full cross section $\sigma_{\rm eff}$ for computing the relic density

(4 回 2 4 回 2 4 回 2 4

Summary of our approach

Remarks:

- force can be attractive or repulsive,
- coefficients c_{ij,i'j'}(φ) depend on φ but also on the incoming and outgoing states (Dirac or Majorana, identical or not)
- the effect is different for the incoming particles being in the singlet or triplet spin state.

Short summary of our approach:

- 1. We took every possible initial state *ij*
- 2. Computed coefficients $c_{ij,i'j'}(\phi)$ and potential $V^{\phi}_{ij,i'j'}(x)$
- 3. Wrote a code to solve the set of coupled Schrödinger equations numerically
- 4. Implemented it into DarkSUSY to use the full cross section $\sigma_{\rm eff}$ for computing the relic density

・ 同 ト ・ ヨ ト ・ ヨ ト

Results - χ_1^0 **pure wino**

Similar results as obtained by Hisano et al. '06 (and also Strumia et al. '07). We obtained smaller effect (apart from resonance) due to different sign in $\chi^+\chi^0_1$ potential

Frascati, 23 June 2010

Results - χ_1^0 **pure wino**

Andrzej Hryczuk

< 3

イロト イロト イヨト

Results - χ_1^0 **pure wino**

Away from resonance: 10^{-12} 10^{-22} pertur bative perturbative 10-6 10-23 6×10^{-13} Sommerfeld effect non-perturbative $\langle \sigma_{\rm eff} v \rangle \, \left[{\rm GeV}^{-2} \right]$ 10-24 $3 imes 10^{-13}$ cm³/s 10^{-25} 10-8 2×10^{-13} 10^{-26} 10-10 10-13 100 104 105 10 100 1000 10^{4} x = m/Tx = m/T

Near resonance:

Andrzej Hryczuk

Sommerfeld enhancements in the MSSM

Frascati, 23 June 2010

12/16

Discussion

Results

13/16

Frascati, 23 June 2010

We included χ_2^0 and more interactions \Rightarrow bigger repulsive effect than obtained by Hisano et al. '06.

Results - χ_1^0 **pure higgsino**

No resonance in this case:

э

• • Ξ

Results - relic density effect

The ratio of relic densities without and with Sommerfeld effect,

$$=\frac{(\Omega h^2)_0}{(\Omega h^2)_{SE}}$$

 ϵ

Results - relic density effect

Results - relic density

perturbative

The black bands are WMAP7 regions,

 $\Omega h^2 = 0.1123 \pm 0.0035$ (68% CL uncerinities)

Conclusions & Prospects

- We have computed the Sommerfeld effect coming from gauge bosons and Higgs in the MSSM and then the relic density using DarkSUSY
- ► The results show that this effect is important for non-neglible parameter regions, also away from the resonance
- ► We wrote a code to solve the Schrödinger equations numerically and implemented this into DarkSUSY ⇒ tool to investigate Sommerfeld effect for general MSSM parameters

Future work:

- Search for other regions of MSSM where Sommerfeld effect can be relevant
- Look at indirect detection signals with the Sommerfeld effect included, both for the relic density and annihilation cross section

(1日) (1日) (日)