
Crossing regions: a quick overview

Yunsheng Dong

26/03/2021

2

Crossing block of data

● Information about the MC crossing block of data are present here:

https://docs.google.com/viewer?url=https%3A%2F%2Fagenda.infn.it%2Feven
t%2F25103%2Fcontributions%2F127423%2Fattachments%2F78861%2F1021
03%2FFOOT_FLUKA.pdf

● This presentation will just show you how to retrieve the crossing region numbers to be
used in the analysis softwares (avoiding hard coded numbers)

https://docs.google.com/viewer?url=https%3A%2F%2Fagenda.infn.it%2Fevent%2F25103%2Fcontributions%2F127423%2Fattachments%2F78861%2F102103%2FFOOT_FLUKA.pdf
https://docs.google.com/viewer?url=https%3A%2F%2Fagenda.infn.it%2Fevent%2F25103%2Fcontributions%2F127423%2Fattachments%2F78861%2F102103%2FFOOT_FLUKA.pdf
https://docs.google.com/viewer?url=https%3A%2F%2Fagenda.infn.it%2Fevent%2F25103%2Fcontributions%2F127423%2Fattachments%2F78861%2F102103%2FFOOT_FLUKA.pdf

3

Txt2nturoot: input files

For the Simulation guy:

● Add a FOOT.reg file in
Reconstruction/level0/geomaps/expname/FOOT
.reg with all the MC region numbers and
names for the given simulation

● Add a -reg flag in the ./Txt2NtuRoot command
to enable the crossing regions

What is behind in the code:

● -reg flag activates the m_enableRegionMc flag
contained in GlobalPar

● Thanks to Chris, the region map is stored in
Reconstruction/level0/geomaps/expname/FOOT
.reg
The region file is read and the crossing number
and the region name are stored in a map
contained in runinfo.

4

Txt2root: output file

● In the output file there should be a mcreg.
Branch in the EventTree that contains all the
crossing block of data

● And a runinfo with the global parameters and
the crossing map.

● Type runinfo→Print() to check the presence of
the crossing map

● Type runinfo→Print(“v”) or Print(“verbose”) to
print also the crossing map

5

How to use the map: the fluka guy

● If you are familiar with fluka/flair, you can open
the .inp file with flair and check the name of
the region of interest.

● Then with with the region name you can
retrieve the region number directly with
runinfo→GetRegion() method

E.g.: I want to retrieve the region number of the
first magnet:

● Open flair and click on the magnet and retrieve
the region name (in this case “MAG0”)

● To get the region name just use:
TString regname=”MAG0”;
runinfo→GetRegion(regname)
If the region is present in the current mcfile, it
will return the region number.
Otherwise, it will return a -1 as output

Here the region box must be selected

6

How to use the map: the shoe guy

● A more user friendly way to access to the fluka region
numbers is to use the methods GetReg* added in the
TA*parGeo files

E.g.: the magnets are handled by TADIparGeo, and in
TADIparGeo there are:
GetRegMagnet(n) and GetRegShield(n) that provides the
region number for the magnet and the shielding.
To retrive the first magnet region you can use:
pargeo->GetRegMagnet(0)

● The target region number can be retrieved from:
TAGparGeo::GetRegTarget()

● The GetReg* methods have been developed based on
what is currently written in the PrintRegions() methods

7

Other relevant info

● The region names (MAG0, STC, BMN_SHI) do not change among the different campaigns, only the
region numbers can be different.

● if the PrintRegions() method of a detector needs to be changed, please change also the GetReg*
methods accordingly

● If you want to use the crossings in a standalone analysis macro/code, be sure that the runinfo of
the input mc file is correctly loaded:

TFile *f = new Tfile(inputnameFile.Data());

//open the file etc.

TAGrunInfo *p_runinfo=(TAGrunInfo*)(f→Get("runinfo"));
const TAGrunInfo runinfo(*p_runinfo);
gTAGroot.SetRunInfo(runinfo);

//From now on you can retrieve the crossing regions with both the fluka and shoe guy methods

● In order to analyze mc files that contains also the crossing block of data, be sure to correctly set
the EnableRegionMC flag present in FootGlobal.par

● Thanks to Chris, the mc crossing block of data is propagated
also in the DecodeMC output

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

