Towards a realistic Si digitization for the µ-collider detector

Simone

Pixel digitization

- Starting from Paolo's implementation of CMS pixel digitization (Twiki)
- Main effects included so far:
 - Split of G4 charge into e⁻ holes creation along particle path with energy deposition fluctuations
 - Lorentz angle
 - Diffusion of charge when drifting
 - FE electronics threshold and noise (on signal)

- Main effects not yet included (very much ok for a start):
 - Threshold dispersion (not all pixels can be tuned exactly at the same thr)
 - Parametrized time measurement digitization
 - Right now multiple G4 deposits creates different clusters → no overlap of particles on the same hit is simulated
- Code: Branch 'lbldev' of MuonCVXDDigitiser and branch 'sidigi-dev' of LCTuple packages
 - Mostly working out of the box, just quite a bit of debugging for in the end some small fixes and tuning of parameters required!
 - See full diff on github

Validation

- Simple muon gun with p_T = 10 GeV, only spanning VXD BARREL
- Only running VXD barrel digitization so far, save results and modified LCTuple to store detailed information on individual pixel hits and clusters of them

Roughly speaking expecting ~4ke⁻ of signal per minimum-ionizing particle (as the 10 GeV muon is), equivalent to ~15keV of deposited E

Validation

Energy reconstructed from deposited charge vs true G4 deposit

Digitization parameters / changes

- Diffusion formula/parameter did not make much sense
 - Replaced with something I'm more familiar with (and widely used in literature); made diffusion z-dependent as should be
- Tuned FE electronics threshold and noise to something more in-line with modern FE pixel electronics (and a bit beyond that)
 - this is necessary since the super-thin (50μm thickness vs 100-250μm used for LHC/HL-LHC detectors) silicon sensors in our simulation
 - Note: thin sensors useful for accurate time measurements as well

Parameter	Old default	Branch: Ibldev	Notes
Threshold	200 e ⁻	500 e ⁻	Old not consistent with other settings and very aggressive
Diffusion	2µm	0.07	DIFFERENT computation
Electronic noise	100 e ⁻	80 e ⁻	
Lorentz angle	0.8	0.8	Haven't checked yet
Cut on δ rays	30 keV	30 keV	
Segment length	5 μm	5 μm	
"Width of cluster"	3		Not used anymore

Reconstruction of clusters

- Pixel clusters formation:
 - Wish: use pixel hits above threshold to form cluster of contiguous hits
 - <u>Right now</u>: one true energy deposit → one cluster, no check if hits contiguous (so-called broken clusters are accepted so far)
- Position determination:
 - Master: use charge-weighted average of all pixels' positions in the cluster
 - New: use simple average of all pixels in the cluster (it's actually better!)
 - Wish: use charge-weighted average with calibrated constants of only the most external pixel hits in a cluster
 - Why? It avoids being sensitive to the large charge deposit fluctuations in the central pixels that see a full path length and only introduce a large noise in the averaging procedure

Position determination

- Test with simple averaging of hits positions
 - Note: 25 μm * sqrt(12) ~ 7 μm

Cluster position Y (reco - true)

Hits filtering

- Ultimately, would like to study discrimination based on released energy and cluster shapes of signal vs beam background
- Below, the clear correlation of size vs theta for prompt muons
 - Expect BIB to be quite different (both in shape as well as in E released)

Cluster size in Y direction vs θ

BIB simulation

- 100 single-µ events, 30 BIB bkg events (1% BIB)
 - Interested in BIB distribution overall, does not matter if digitized in single or multiple events at this stage (over multiple events requires less RAM)

Cluster size in Y direction vs θ

Uniform vs theta and longer clusters from BIB

Simple size Y selection vs theta

Cut Efficiency	Loose	Tight
Single muon	99.4%	75.0%
Single muon + BIB	63.5%	42.9%

Cluster size in Y direction vs θ

Note: single-muon is uniform in cos(theta)

More discrimination...

- Some discrimination also from deposited energy, however:
 - Not enough for a plain cut
 - Need to be careful to not penalize low-βγ particles
- Still, could be a useful quantity in pre-tracking filtering for a first pass
 - TODO: will explore combining this and size information in a smarter way

Even more...

- Some discrimination also on size X
 - Unphysically long clusters for BIB...

Cluster size in X direction

Future TODO

- Determine cluster energy/shape discrimination (better..)
- Further tune some of the parameters and study what is nice vs required → requirements for R&D
- A few further tweaks to the digitization:
 - Implement threshold dispersion
 - Implement time digitization
 - Include noisy pixels (small effect though but easy)
- Run/validate realistic digi for VXD endcap as well, create new job config and evaluate running time on BIB
- Change logic to separate digitization and cluster reconstruction
 - Allow to mix different energy deposits (SimHits) in the same pixel(s)
 - Mostly relevant if someone wants to study dense environments (e.g. core of jets)
- Change and tune position determination algorithm