STUDY ON TRACKER OCCUPANCY — UPDATE AFTER LOSING UPPER TIMING CUT

Hannsjörg Weber (Fermilab)

Reminder: muon collider tracker labeling

Reminder of original results: Pixel occupancy with fixed timing

Timing: Vertex layer-1/2 = 30ps, Other Vertex = 60ps, Inner Barrel+Endcap = 60ps, Outer Barrel+Endcap = 100 ps nits per pixe - Vtx12: 15×15μm², VtxOth: 15×15μm², IBIE: 25×150μm², OBOE: 50μm×0.5cm - Vtx12: 25×25μm², VtxOth: 25×25μm², IBIE: 50×150μm², OBOE: 100μm×0.5cm - Vtx12: 50×50μm², VtxOth: 50×50μm², IBIE: 50×250μm², OBOE: 100μm×1cm - Vtx12: 75×75μm², VtxOth: 75×75μm², IBIE: 75×250μm², OBOE: 150μm×1cm - Vtx12: 25×150μm², VtxOth: 25×150μm², IBIE: 50μm×0.5cm, OBOE: 150μm×2.5cm 10 = - Vtx12: 50×150μm², VtxOth: 50×150μm², IBIE: 100μm×0.5cm, OBOE: 100μm×5cm — Vtx12: 50×250μm², VtxOth: 50×250μm², IBIE: 100μm×1cm, OBOE: 150μm×5cm - Vtx12: 75×150um². VtxOth: 75×150um². IBIE: 150um×1cm. OBOE: 150um×7.5cm 10^{-1} 10⁻² 10^{-3} 20 50 layer

- We find that we need:
 - Small square pixel in innermost layers.
 - Macropixels O(50 μm ×
 1 mm) for the inner tracker.
 - Short strips O(100 μm ×
 1 cm) for the outer tracker.

Reminder of original results: Pixel occupancy with fixed pixel size

Position: Vertex = $50 \times 50 \mu \text{m}^2 / 75 \times 75 \mu \text{m}^2$, Inner: $75 \mu \text{m} \times 1 \text{mm}$, Outer: $100 \mu \text{m} \times 2 \text{cm}$

- If we can afford small pixels/strips, most of the detector can use "modest" timing resolution if ~60ps.
- For innermost vertex/inner barrel layer, we will benefit for better timing of 20-30ps.
- However, as all hits shown here are unwanted hits, a very good timing would be very beneficial.

Current tracker configuration for muon collider physics studies

• Based on these and other studies, we fixed the tracker configuration for the snowmass physics studies. For more details, see <u>this presentation</u> by Massimo Casarsa.

		cell size	sensor thickness	time resolution	spatial resolution	number of cells
VXD	В	25 μ m $ imes$ 25 μ m pixels	50 μm	30 ps	5 μ m $ imes$ 5 μ m	729M
	E	25 μ m $ imes$ 25 μ m pixels	50 μm	30 ps	5 μ m $ imes$ 5 μ m	462M
IT	В	50 μ m $ imes$ 1 mm macropixels	100 μm	60 ps	7 μm × 90 μm	164M
	E	50 μ m $ imes$ 1 mm macropixels	100 μm	60 ps	7 µm $ imes$ 90 µm	127M
ОТ	В	50 μ m $ imes$ 10 mm microstrips	100 μm	60 ps	7 μm × 90 μm	117M
	Е	50 μ m $ imes$ 10 mm microstrips	100 μm	60 ps	7 μ m $ imes$ 90 μ m	56M

Sum: 1.6B

New development: upper timing cut

• As shown now several times, slow particles arrive much later at pixel layer especially for the outer tracker.

I looked into this.

New development: upper timing cut

- As shown now several times, slow particles arrive much later at pixel layer especially for the outer tracker.
- Take new ntuples I obtained from Nazar (thank you), reran my study first, i.e. take spatial and time resolution as before, cut on 3σ for time resolution.
- Then open up upper timing cut, place it at 1, 10, or 100 ns.
- Also add on plot the number I got from the previous ntuples from Massimo (which used reco hits not sim hits) just for comparison.
- See impact on per pixel occupancy as reminder: goal is $\leq 1-3\%$.

Occupancy for VTX dimensions/timing

• For $25 \times 25 \mu m^2$ and $\sigma_t = 30 ps$, opening up upper cut would work, especially for all but two innermost layers.

Occupancy for VTX dimensions/timing

• Simone suggested to look at $50 \times 50 \mu m^2$ and $\sigma_t = 30 ps$, because digitization might show clusters of >1 pixels per hit. Now two innermost layers cannot live with opened cut.

Occupancy for IT dimensions/timing

• IT is layers 24-27: For the IT barrel, opening cut to 1ns would lead to 4-8% occupancy for barrel. What to do?

Occupancy for OT dimensions/timing

Suggestion:

• If we don't feel good about it, we could change OT barrel to 50μm×5mm.

• IT is layers 28-51: For the *T barrel, opening cut to 10ns would lead to 3% occupancy for barrel. Is this acceptable?

Summary

- I showed a simple study, studying how many hits can be reconstructed depending on the pixel size and pixel time resolution.
- Yet it was shown, that slow particles arrive much later for the outer layers, need to account for that.
 - Extended study to take that into account.

Conclusions:

- For vertex tracker, besides two innermost layers, opening up upper timing cut should be fine. Since those two layers are closest to interaction point, I don't think any action is needed.
- For inner tracker, the barrel would suffer if opening up upper timing cut to 1 ns. Probably need smaller pixel size, e.g. $50 \times 200 \mu m^2$ should work. Does this sound reasonable? Should it be done only for the barrel or all of the inner tracker.
- For outer tracker, it looks generally fine, but innermost barrel layer is borderline at 3% occupancy. So maybe also reduce pixel size for outer barrel?