

Searches for CP violation in D⁰ decays from BABAR and Belle

Maurizio Martinelli on behalf of the BABAR Collaboration Università degli Studi di Bari and INFN FPCP 2010 - May 27 2010, Torino ITALY

CP violation in D⁰ decays

 <u>Standard Model</u>: CP violation from KM phase in CKM quark mixing matrix:

$$\begin{bmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta + \frac{i}{2}\eta\lambda^2) \\ -\lambda & 1 - \frac{\lambda^2}{2} - \frac{i\eta A^2 \lambda^4}{4} & A\lambda^2(1 + i\eta\lambda^2) \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

- Charmed Mesons:
 - CP violation is CKM suppressed $\mathcal{O}(10^{-3})$
 - Experimental Sensitivity O(10⁻²)

1% Signal = New Physics

New Physics Scenario

CPV ~ 1% Strong Evidence for non-SM processes

- Direct CP violation at tree level («I%)
 - extra quarks in SM vector-like representations
 - supersymmetry without R-parity models
 - two Higgs doublet models
- Direct CP violation at one-loop (1%)
- QCD penguin and dipole operators
 - FCNCs in supersymmetric flavor models.

Singly Cabibbo Suppressed (CS) decays are uniquely sensitive to $\ c \to u q \bar{q}$ Cabibbo Favoured and Double CS are not

Details:

Y. Grossman, A. L. Kagan and Y. Nir, Phys. Rev. D75, 036008 (2007) I. I. Bigi, hep-ph/0104008 (2001)

Charm & B-factories

- Why search for CP violation at B-factories:
 - Υ (4S): ccbar cross section = 1/4 total
 - require p*(D) > 2.5 GeV/c to reduce background
 - $D^{*+} \rightarrow D^0 \pi^+$ provides D^0 flavor

Drawback: Electroweak Forward-Backward asymmetry

Experimental Searches

- Direct CP violation
- Dalitz Plot analysis
- Time dependent
- T odd correlations

Direct CP violation

$$A_{CP} = \frac{\Gamma_{D^0} - \Gamma_{\overline{D}{}^0}}{\Gamma_{D^0} + \Gamma_{\overline{D}{}^0}} \qquad \qquad \Gamma \text{ = yields}$$

- In asymmetric detectors like BABAR and Belle, forwardbackward asymmetry could bias these measurements
- FB asymmetry = EW+EM currents interference $N_c/N_{\bar{c}} = f(\cos \theta^*)$
- Two solutions:
 - estimate FB asymmetry contribution
 - normalize CP asymmetry to CF channels

$$A_{CP} = \frac{R_{D^0} - R_{\overline{D}{}^0}}{R_{D^0} + R_{\overline{D}{}^0}}, \quad \text{with } R = \frac{\Gamma_{CS}}{\Gamma_{CF}}$$

$$A_{CP} = \frac{\Gamma(D^0 \to h^+ h^-) - \Gamma(\overline{D}{}^0 \to h^+ h^-)}{\Gamma(D^0 \to h^+ h^-) + \Gamma(\overline{D}{}^0 \to h^+ h^-)} = \underbrace{A_{CP,dir}^{hh}}_{\text{from mixing analysis}} + \underbrace{A_{CP,ind}^{hh}}_{\text{from mixing analysis}}$$

- Major issue: asymmetry in D⁰ tagging
 - FB asymmetry
 - soft pion(π_s) reconstruction asymmetry

Need to separate contributions to ACP

$$A_{CP,dir}^{hh} = A_{CP}^{hh} + A_{FB} + A_{\pi_s}$$

• map the π_s asymmetry using $D^0 \rightarrow K^-\pi^+$ tagged and untagged data to retrieve the weighting factors to correct D^0 yield

$$a^{\pm}(\cos\theta^{*}) = \frac{n_{D^{0}}(\pm|\cos\theta^{*}|) - n_{\overline{D}^{0}}(\pm|\cos\theta^{*}|)}{n_{D^{0}}(\pm|\cos\theta^{*}|) + n_{\overline{D}^{0}}(\pm|\cos\theta^{*}|)}$$
$$A_{CP} \simeq [a^{+}(\cos\theta^{*}) + a^{-}(\cos\theta^{*})]/2$$
$$A_{FB} \simeq [a^{+}(\cos\theta^{*}) - a^{-}(\cos\theta^{*})]/2$$
$$\bullet \text{ even: } A_{CP} \text{ uniform over } \cos\theta$$
$$\mathsf{odd: } A_{FB} \text{ asymmetric over } \cos\theta \leftarrow \mathsf{odd: } A_{FB} \text{ asymmetric over } \cos\theta \leftarrow \mathsf{odd: } A_{FB} \text{ asymmetric over } \cos\theta \leftarrow \mathsf{odd: } A_{FB} \text{ asymmetric over } \cos\theta \leftarrow \mathsf{odd: } A_{FB} \text{ asymmetric } A_{FB} \text{ asymmetric } \mathsf{odd: } A_{FB} \text{ asymmetric } A_$$

measure A_{CP} in cosθ bins in order to isolate production asymmetry

measure A_{CP} from χ^2 fit over $\cos\theta$ bins

Phys. Rev. Lett. 100, 061803 (2008)

Systematic errors

Category	$\Delta A_{CP}{}^{KK}$	$\Delta A_{CP}^{\pi\pi}$
– 2-dim PDF shapes	±0.04%	±0.05%
π_s corrections	±0.08%	±0.08%
A _{CP} corrections	±0.09%	±0.20%
Quadrature sum	±0.13%	±0.22%

→ two-dimensional fit to D⁰ and Δm Results

Sample	Size		
K ⁻ π⁺ untag	6.6x10 ⁶		
K ⁻ π⁺ tag	1.5x10 ⁶		
K⁺K⁻	130x10 ³		
π+π-	64×10 ³		

 $A_{CP}^{KK} = (0.00 \pm 0.34_{stat} \pm 0.13_{syst})\%$

 $A_{CP}^{\pi\pi} = (-0.24 \pm 0.52_{stat} \pm 0.22_{syst})\%$

May 27, 2010 Maurizio Martinelli - Searches for CP violation in D⁰ decays from BABAR and Belle

Phys. Lett. B670.190 (2008)

Belle (540fb⁻¹)

Sample	Size	Purity		
K ⁻ π⁺ untag	6.3x10 ⁶	80%		
K ⁻ π⁺ tag	1.3x10 ⁶	99%		
K+K-	120x10 ³	97%		
π+π-	51×10 ³	91%		

Systematic errors

Category	$\Delta A_{CP}{}^{KK}$	$\Delta A_{CP}^{\pi\pi}$
 Signal Counting 	±0.04%	±0.06%
π_s corrections	±0.10%	±0.10%
A _{CP} extraction	±0.03%	±0.04%
Quadrature sum	±0.11%	±0.12%

→ one-dimensional fit to D⁰ mass spectrum **Results**

 $A_{CP}{}^{KK} = (-0.43 \pm 0.30_{stat} \pm 0.11_{syst})\%$ $A_{CP}{}^{\pi\pi} = (+0.43 \pm 0.52_{stat} \pm 0.12_{syst})\%$

Dalitz Plot Analysis

- Quantities that can be measured:
 - Asymmetry on the Dalitz Plot
 - Asymmetry in the angular moments
 - Asymmetry in the amplitudes (model dependent)
 - Phase Space integrated asymmetry

Cabibbo Suppressed Decay $D^0 \rightarrow \pi^+\pi^-\pi^0$

Phys. Lett. B662.102 (2008)

BELLE

Belle (532fb⁻¹) Phase Space integrated asymmetry measurement

 $A_{CP} = (0.43 \pm 0.41_{stat} \pm 1.30_{syst})\%$

No CPV found in Dalitz amplitudes comparing amplitudes, phases and fractions

Time Dependent (TD)

for a definition of x, y, r_m and φ_f see Nicola's talk on D⁰ mixing

• D⁰ mixing affects D⁰ decay times (h=K, π) $\tau_{hh}^+ = \tau_{K\pi} \left[1 + r_m \left(y \cos \varphi_f - x \sin \varphi_f\right)\right]^{-1}$ $\tau_{hh}^- = \tau_{K\pi} \left[1 + r_m^{-1} \left(y \cos \varphi_f - x \sin \varphi_f\right)\right]^{-1}$ • defining

$$\tau_{hh} = \frac{\tau_{hh}^{+} + \tau_{hh}^{-}}{2} \qquad A_{\tau} = \frac{\tau_{hh}^{+} - \tau_{hh}^{-}}{\tau_{hh}^{+} + \tau_{hh}^{-}}$$

ΔY is a probe for CP violation in decay
 times

$$\Delta Y = \frac{\tau_{K\pi}}{\tau_{hh}} A_{\tau} \qquad (SM: \Delta Y=0)$$

Phys. Rev. Lett. 98.211803 (2007)

Belle (540fb⁻¹)

Purity

98%

99%

92%

Size

• D* tagged events Events per 61.5 fs 10⁴ 10³ Events per 61.5 fs 10 ' (a) KK *(b) K*π 10 many systematics cancel in lifetime ratio 10^{2} 10² 10 Sample 10 -2000 2000 -2000 2000 4000 4000 t (fs) |||x|0³ K-π+ t (fs) _ਵ0.16 Events per 61.5 fs *(c)* ππ (d)₹ ₅0.15 10³ 1220x10³ K⁺K⁻ $Z^{E}_{+_{3}0.14}$ $Z^{0.14}_{0.13}$ 10^{2} ycp $\neq 0$ (A_{\[\Gamma]} = -A_{\[\Gamma]}) $A_{\[Gamma]}^{KK} = (0.15 \pm 0.35_{stat}) % A_{\[Gamma]}^{\pi\pi} = (-0.28 \pm 0.57_{stat}) %$ 49x10³ $\pi^+\pi^-$ 0.12 10 0.11 0.1 -2000 2000 2000 t(fs) t(fs) $t = m_{D^0} \vec{L} \cdot \vec{p} / p^2$

Systematics

BELLE

Source	Acceptance	Equal t ₀	M window	Sig/SB bkg	Bkg B(t)	Res Func	Selection	Binning	Total
σ(%)	0.07	0.08	<0.01	0.06	0.07	0.01	0.05	0.01	0.15

$A_{\Gamma} = (0.01 \pm 0.30_{stat} \pm 0.15_{syst})\%$

Phys. Rev. D78.011105 (2008)

BABAR (385fb⁻¹)

- D* tagged events
- many systematics cancel in lifetime ratio

Sample	Size	Purity
K⁻π⁺	731×10 ³	99.9%
K ⁺ K ⁻	67×10 ³	99.6%
π+π-	31×10 ³	98.0%

 $\Delta Y^{KK} = (-0.40 \pm 0.44_{stat} \pm 0.12_{syst})\%$ $\Delta Y^{\pi\pi} = (0.05 \pm 0.64_{stat} \pm 0.32_{syst})\%$

Systematics

Source	Sig Model	Charm Bkg	Comb Bkg	Selection	Detector Model	Total
σ(%) KK	0.072	0.001	0.001	0.083	0.054	0.122
σ(%) π π	0.265	0.002	0.005	0.172	0.040	0.318
σ (%) average	0.062	0.001	0.002	0.011	0.054	0.083

 $\Delta Y = (-0.26 \pm 0.36_{stat} \pm 0.08_{syst})\%$

T odd correlations

W. Bensalem, A. Datta and D. London, Phys. Rev. D66, 094004 (2002)W. Bensalem and D. London, Phys. Rev. D64, 116003 (2001)W. Bensalem, A. Datta and D. London, Phys. Lett. B538, 309 (2002)

• Asymmetry in T-odd observable \rightarrow T violation \rightarrow CPV (assuming CPT invariance)

 $\mathcal{A}_T = \frac{1}{2} \left(A_T - \overline{A}_T \right) \qquad \mathsf{T violating observable}$ May 27, 2010 Maurizio Martinelli - Searches for CP violation in D⁰ decays from BABAR and Belle

I. I. Bigi, hep-ph/0107102 (2001)

• T-odd correlation observable (C_T) can be built using final state particle momenta:

$$C_T = \vec{p}_{K^+} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-})$$

$$A_T = \frac{\Gamma(D^0, C_T > 0) - \Gamma(D^0, C_T < 0)}{\Gamma(D^0, C_T > 0) + \Gamma(D^0, C_T < 0)}$$

$$\bar{A}_T = \frac{\Gamma(\bar{D}^0, -\bar{C}_T > 0) - \Gamma(\bar{D}^0, -\bar{C}_T < 0)}{\Gamma(\bar{D}^0, -\bar{C}_T > 0) + \Gamma(\bar{D}^0, -\bar{C}_T < 0)}$$

Effect	signal PDF	Δm peak PDF	bin size	PID	р*(D ⁰)	$\cos \theta^*$	fit bias	mistag	det asym	Total
$\sigma(x 0^{-3})$	0.2	0.5	0.2	3.5	1.7	0.9	I.4	0.0	1.1	4.4
								0		

 $A_T = (1.0 \pm 5.1_{\text{stat}} \pm 4.4_{\text{syst}}) \times 10^{-3}$

Conclusions

- D⁰ and charm decays provide a powerful probe for non SM processes involving CPV
- Experimental sensitivity comparable to higher SM predictions
- Many experimental techniques developed by BABAR and BELLE
- No evidence of CPV found yet
- Is the best yet to come?

