

Lepton Flavor Violation at B-factories

Y.Miyazaki

Nagoya university

(on behalf of Belle and Belle Collaboration)

Nagoya University
タウ・レプトン物理研究センター
Tau Lepton Physics Research Center

Introduction

Introduction
LFV in SUSY
Comparison between NP models

Introduction

Lepton flavor violation (LFV) in charged lepton

⇒negligibly small probability in the Standard Model (SM) even including neutrino oscillation

- Br($\tau \rightarrow l\gamma$) <O(10⁻⁵⁴)
- Br(τ→3leptons) <O(10⁻¹⁴) (PRL95 41802(2005), EPJC8 513(1999))

Many extensions of the SM predict LFV decays. These branching fractions could be enhanced as high as current experimental sensitivity

⇒Observation of LFV is a clear signature of New Physics (NP)

Tau lepton:

- The heaviest charged lepton
- Many possible LFV decay modes
- ⇒Ideal place to search for LFV

LFV in SUSY

SUSY is the most popular candidate among new physics models

induce naturally LFV at one-loop due to slepton mixing

 $\tau{\to}l\gamma$ mode has the largest branching fraction in SUSY-Seesaw (or SUSY-GUT) models

When sleptons are much heavier than weak scale

LFV associated by neutral Higgs boson (h/H/A)

Higgs coupling is proportional to mass_τ ⇒μμ or ss (KK, η, f₀(980) and other) are favored

Comparison between NP models

Ratios of LFV decay Br allow to discriminate between new Physics models.

	SUSY+GUT (SUSY+Seesaw)	Higgs mediated	Little Higgs	non-universal Z' boson
$\left(\frac{\tau \to \mu\mu\mu}{\tau \to \mu\gamma}\right)$	~2 × 10 ⁻³	0.06~0.1	0.4~2.3	~16
$\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma}\right)$	~1 × 10 ⁻²	~1 × 10 ⁻²	0.3~1.6	~16
Br(τ→μγ) @Max	<10 ⁻⁷	<10 ⁻¹⁰	<10 ⁻¹⁰	<10 ⁻⁹

(JHEP 0705, 013(2007), PLB54 252 (2002)) $\tau \rightarrow l\gamma$ $\tau \rightarrow 3$ leptons Favorite modes

Model independent searches for various LFV modes are very important

Analysis

B-factories
Analysis method
Signature of signal and background

B-factories

B-factoy: E at CM = Y(4S)

e⁺(3.5 (3.1) GeV) e⁻(8 (9) GeV) for KEKB (PEP II) $\sigma(\tau\tau)\sim 0.9$ nb, $\sigma(bb)\sim 1.1$ nb

Other Y(nS) and Energy scan are also collected by B-factories

Belle

A B-factory is also a τ-factory!

Detector: Good track reconstruction and particle identification

Lepton ID ~ (80-90)%

Fake ID ~ O(0.1-1)%

BABAR Detector

Muon/Hadron Detector

Magnet Coil

Electron/Photon Detector

Cherenkov Detector

Tracking Chamber

Support Tube

Vertex Detector

e⁻

~4.8x10⁸ ττ at BaBar

~9x108 ττ at Belle

Analysis method

Signature of signal and background

Results

```
l<sub>γ</sub>
3lepton
Ihh'
IKsKs and IKsKs
Y (ns)→I<sup>±</sup>τ+
```


 $\tau \rightarrow \mu \gamma, e \gamma$ (PLB666,16(2008))

Data: $492M \tau$ pairs

Br($\tau \rightarrow \mu \gamma$)<4.5x10⁻⁸ at 90%C.L.

Br($\tau \to e\gamma$)<1.2x10⁻⁷ at 90%C.L.

Data: 482M τ pairs (including Y(2,3S) data)

Use Neural network for event selection

Decay modes	2σ signal ellipse		ε	$UL (\times 10^{-8})$	
	obs	exp	(%)	obs	exp
$\tau^{\pm} \to e^{\pm} \gamma$	0	1.6 ± 0.4	3.9 ± 0.3	3.3	9.8
$\tau^{\pm} \to \mu^{\pm} \gamma$	2	3.6 ± 0.7	6.1 ± 0.5	4.4	8.2

Br($\tau \rightarrow \mu \gamma$)<4.4x10⁻⁸ at 90%C.L. Br($\tau \rightarrow e \gamma$)<3.3x10⁻⁸ at 90%C.L.

Remaining many BG from $e^+e^- \rightarrow \tau^+\tau^-\gamma$ sensitivity is limited by the background

τ->3leptons @ BaBar

Update analysis from 376fb⁻¹ → 477fb⁻¹

arxiv::1002.4550 (submitted to. PRD-RC)

Improve lepton ID eff.

- μ: 66% → 77%

- e: 89% → 91%

→Better BG rejection

BG: two-photon Bhabha

no events in signal region for all modes

Br<(1.8-3.3)x10⁻⁸

Improved by a factor of 2-3 from previous results

Channel	Efficiency (%)	N_{bgd}	Exp. UL	N_{obs}	UL	
$e^+e^-e^+$	8.6 ± 0.2	0.12 ± 0.02	3.4×10^{-8}	0	2.9×10^{-8}	
$e^+e^-\mu^+$	8.8 ± 0.5	0.64 ± 0.19	3.7×10^{-8}	0	2.2×10^{-8}	
$e^{+}e^{+}\mu^{-}$	12.6 ± 0.7	0.34 ± 0.12	2.2×10^{-8}	0	1.8×10^{-8}	
$e^+\mu^-\mu^+$	6.4 ± 0.4	0.54 ± 0.14	4.6×10^{-8}	0	3.2×10^{-8}	
$e^-\mu^+\mu^+$	10.2 ± 0.6	0.03 ± 0.02	2.8×10^{-8}	0	2.6×10^{-8}	
$\mu^+\mu^-\mu^+$	6.6 ± 0.6	0.44 ± 0.17	4.0×10^{-8}	0	3.3×10^{-8}	

$\tau \rightarrow 3$ leptons @ Belle

Update analysis from 543fb⁻¹ → 782b⁻¹

Apply almost same event selection as previous analysis

We observe no events in signal region for all modes

PLB 687, 139 (2010)

Mode	ε (%)	$N_{ m BG}^{ m EXP}$	$\sigma_{\rm syst}$ (%)	UL (x10 ⁻⁸)
$e^-e^+e^-$	6.0	0.21 + -0.15	9.8	2.7
$\mu^-\mu^+\mu^-$	7.6	0.13 + -0.06	7.4	2.1
$e^-\mu^+\mu^-$	6.1	0.10+-0.04	9.5	2.7
$\mu^- e^+ e^-$	9.3	0.04 + -0.04	7.8	1.8
$\mu^- e^+ \mu^-$	10.1	0.02+-0.02	7.6	1.7
$e^-\mu^+e^-$	11.5	0.01 + -0.01	7.7	1.5

We obtain upper limit as $Br(\tau \rightarrow 3leptons) < (1.5-2.7)x10^{-8}$

 \Rightarrow Obtained lower ULs than BaBar's ones(< (1.8-3.3)x10⁻⁸)

τ→lhh'

Belle

Update from 157 fb⁻¹ to 671fb⁻¹ @Belle

14 modes are investigated (h,h'= π^{\pm} and K[±]) lepton flavor violation ($\tau^{-} \rightarrow l^{-}h^{+}h'^{-}$)

lepton number violation (τ - \rightarrow l+h-h'-)

Main BG: generic τ, uds for μhh two-photon for ehh'

PLB 682, 355 (2010)

	1 25 302, 300 (2010)				
mode	eff (%)	BG	obs	UL (×10 ⁻⁸)	
μhh'	2.0 - 3.8	0.0 - 1.4	0 - 2	(3.4-16)	
ehh'	2.8 - 4.0	0.0 - 0.6	0 - 1	(4.4-8.8)	

improve upon previous UL by a factor of (1.6-8.8)

IKs and IKsKs @ Belle

Bollo

Data: 671 fb⁻¹ @ Belle

arXiv::1003.1183 submitted to PLB

Dominant BG in signal region

⇒ Fake lepton + real Ks from ee→qq(=u,d,s and c) for both modes

We observe no events in signal region ⇒Set upper limits at 90% C.L.

Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{ m obs}$	s90	\mathcal{B} (×10 ⁻⁸)
$ au^- ightarrow e^- K_{ m S}^0$	10.2	$0.18 {\pm} 0.18$	6.6	0	2.25	2.6
$\tau^- \rightarrow \mu^- K_{\rm S}^0$	10.7	$0.35{\pm}0.21$	6.8	0	2.10	2.3
$\tau^- \rightarrow e^- K_{\rm S}^0 K_{\rm S}^0$	5.82	0.07 ± 0.07	11.2	0	2.44	7.1
$ au^- o \mu^- K_{\mathrm{S}}^0 K_{\mathrm{S}}^0$	5.08	$0.12 {\pm} 0.08$	11.3	0	2.40	8.0

 $B(\tau \rightarrow IK^0sK^0s) < (7.1-8.0)x10^{-8}$

⇒ improve by a factor of (31-43) from CLEO's results

- •B($\tau \rightarrow IK^0s$) < (2.3-2.6) x 10⁻⁸
 - ⇒ Obtain lower ULs than BaBar's ones (3.3-4.4)x10⁻⁸

New Upper Limits on LFV τ Decay

Reach upper limits around 10⁻⁸ Improve by factor ~100 from CLEO

16

LFV in Y decays @BaBar

PRL 104.151802(2010)

Search for $Y(nS) \rightarrow I^{\pm} \bar{\tau}^{+}$

Data collected by BaBar

- $\bullet 117 \times 10^6 \text{ Y}(2\text{S}) (14\text{fb}^{-1})$
- $99 \times 10^6 \text{ Y}(3\text{S}) (27\text{fb}^{-1})$

BG

- Bhabha, μμ and ττ
- multi- π and additional γ

modes	UL(10 ⁻⁶)	improvement factor
Y(2S)→eτ	< 3.2	first!
Y(2S)→μτ	< 3.3	5.5
Y(3S)→eτ	<4.2	first
Y(3S)→μτ	<3.1	3.7

Future Prospects

LFV sensitivity for future prospect
Super B-factory

LFV Sensitivity for future prospects

LFV sensitivity

depends on background level

 $\tau \rightarrow |\gamma|$

Sensitivity currently limited due to background from $\tau^+\tau^-\gamma$ events

⇒ scale as ~1/√L

- τ→3leptons, I+meson Negligible background at 1ab⁻¹
- due to Good particle identification
 - Mass restriction to select meson

Expected to remain a few or less BG event at 10 ab⁻¹

scale as ~1/L

Super B-factory

Super B-factory:(10~50) ab⁻¹

Expected sensitivity

$$\tau \rightarrow l\gamma \quad Br \sim O(10^{-(8-9)})$$

 τ →III, I+meson Br~O(10⁻⁽⁹⁻¹⁰⁾)

For example, to improve sensitivity of I_{γ} modes

- Reduce beam BG
- Improve resolution of γ
 - ⇒ Reduce material in front of EM calorimeter

Summary

Summary

Lepton flavor violation is a good signature of NP.

We have searched for LFV τ and Y(ns)decay using a large data sample obtained by B-factories

No LFV signals are observed yet and we set limits of branching faction around $O(10^{-8})$ for τ decays

- Improve sensitivity by factor ~100 from CLEO
- ⇒rejected BG effectively because of detailed BG study

Other process: UL< O(10⁻⁶) for Y(nS) decays

Will update results using full data samples

Super B-factories will make LFV sensitivity to reach O(10^{-9~10}) with 50 ab⁻¹