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Abstract. We present a global analysis of leptonic and semileptonic kaon decay data, including all recent
results published by the BNL-E865, KLOE, KTeV, ISTRA+ and NA48 experiments. This analysis, in
conjunction with precise lattice calculations of the hadronic matrix elements now available, leads to a very
precise determination of |Vus| and allows us to perform several stringent tests of the Standard Model.

PACS. 13.20.Eb Decays of K mesons

1 Introduction

Within the Standard Model (SM), leptonic and semilep-
tonic kaon decays can be used to obtain the most accu-
rate determination of the magnitude of the element Vus

of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2].
A detailed analysis of these processes potentially also pro-
vides stringent constraints on new physics scenarios: while
within the SM, all di → uj�ν transitions are ruled by the
same CKM coupling Vji (satisfying the unitarity condi-
tion

�
k |Vik|2 = 1), and GF is the same coupling that

governs muon decay, this is not necessarily true beyond
the SM. New bounds on violations of CKM unitarity and
lepton universality and deviations from the V − A struc-
ture translate into significant constraints on various new-
physics scenarios. Alternately, such tests may eventually
turn up evidence of new physics.

In the case of leptonic and semileptonic kaon decays,
these tests are particularly significant given (i) the large
amount of data recently collected by several experiments,
(ii) the substantial progress recently made in evaluating
the corresponding hadronic matrix elements from lattice
QCD, and (iii) the precise analytic calculations of ra-
diative corrections and isospin-breaking effects recently
performed within chiral perturbation theory (ChPT), the
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low-energy effective theory of QCD. This progress on both
the experimental and the theoretical sides allows for unique
tests of the SM that probe very high energy scales.

An illustration of the importance of semileptonic kaon
decays in testing the SM is provided by the unitarity re-
lation

|Vud|2 + |Vus|2 + |Vub|2 = 1 + ∆CKM. (1)

Here the Vji are the CKM elements as determined from
the various di → uj processes, where the value of GF is
determined from the muon life time: Gµ = 1.166371(6)×
10−5GeV−2 [3]. ∆CKM parameterizes possible deviations
from the SM induced by dimension-six operators, con-
tributing either to muon decay or to di → uj transitions.
As we will show in the following, the present accuracy on
|Vus| allows us to set bounds on ∆CKM around 0.1% which
translate into bounds on the effective scale of new physics
on the order of 10 TeV.

A detailed analysis of precise tests of the Standard
Model with leptonic and semileptonic kaon decays has al-
ready been presented in Ref. 4. However, the significant
progress on both the experimental and theoretical sides
has motivated us to perform an updated analysis with
three major areas of emphasis: (i) the determination of
|Vus| from experimental data, with and without imposing
CKM unitarity; (ii) the comparison between the values of
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error of the order of 0.02%
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Need a precise determination of |Vus|
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•Constancy of GV= GF|Vud| 
checked at 1.3 x 10-4 level

•Scalar current consistent with 
zero (10-3GV)

• Assuming universal coupling
(GF =Gµ) can extract Vud

Vud determination

 Best result: from superallowed 0+→0+ nuclear transitions.
    (comprehensive review [Towner & Hardy Rep. Prog. Phys. 73 (2010) 046301])
 Master formula
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From most recent neutron β decay result: 0.9758(13)
From pion β decay (PDG08):0.9742(26)

Vud determination
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The FlaviaNet Kaon working group

•The most precise measurement of |Vus| is obtained from the charged                                                          
and neutral kaon channel

•FlaviaNet Kaon WG (www.lnf.infn.it/wg/vus/). Recent kaon  
  physics results come from many experimental (BNL-E869, KLOE, 
  KTeV, ISTRA+, NA48) and theoretical (Lattice, χPT,) improvements. 
  The main purpose of this working group is to perform precision tests of 
  the Standard Model and to determine with high accuracy 
  fundamental couplings (such as Vus) using only published 
  data on kaon decays, taking correlations into account.
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 Physics results:
• |Vus|× f+(0)

• |Vus|/|Vud| × fK/fπ.

Global fits and averages:
• KL, KS, and K±, dominant BRs and lifetime.
• Parameterization of the K→π interaction (form factor)

2 FlaviaNet Kaon Working Group: Evaluation of |Vus| and Standard Model tests from kaon data

|Vus| obtained from data on K → π�ν (K�3) and K → µν
(Kµ2) decays and the corresponding constraints on devi-
ations from the V − A structure of the charged current;
(iii) tests of lepton universality in K�3 decays.

To carry out this analysis, values are needed for the
hadronic constants fK/fπ and f+(0), as discussed in
Sects. 2.1.1 and 2.2.1. These values are obtained using
lattice QCD, and various determinations have been per-
formed. The lattice QCD community, as represented by
the FlaviaNet Lattice Averaging Group (FLAG) [5–7], is
progressing towards convergence on a set of reference val-
ues, but in the meantime, for the purposes of this work, we
are led to propose our own. The criteria we have applied
in averaging lattice QCD results are motivated, but do not
represent the only set of possible choices. Our adoption of
these values is intended to illustrate what precision can
be obtained in testing the SM, given current experimen-
tal and theoretical results. In particular, wherever possi-
ble we quote results for quantities such as |Vus|f+(0) or
|Vus/Vud|×fK/fπ, which are independent of lattice inputs
and ready for use as new lattice results become available.

This paper is organized as follows. The phenomeno-
logical framework needed to describe K�3 and Kµ2 de-
cays within and beyond the SM is briefly reviewed in
Sect. 2. The experimental data is reviewed and combined
in Sect. 3. The results are presented and interpreted in
Sect. 4.

2 Phenomenological framework

2.1 K�2 rates in the Standard Model

Within the Standard Model, the ratio of photon-inclusive
K± → �±ν (K±

�2(γ)) to π± → �±ν (π±�2(γ)) decay rates can
be written as [8, 9]

ΓK�2

Γπ�2

=
|Vus|

2

|Vud|
2

f2
K

f2
π

mK(1−m2
�/m2

K)2

mπ(1−m2
�/m2

π)2
(1 + δEM) , (2)

where fK and fπ are the kaon and pion decay con-
stants, and δEM denotes the effect of long-distance elec-
tromagnetic corrections. Short-distance radiative effects
are universal and cancel from the ratio. For pointlike
kaons and pions, the long-distance electromagnetic cor-
rections depend only on the particle masses. The dom-
inant uncertainty on δEM comes from terms depending
on the hadronic structure. Most analyses to date make
use of the results of Refs. 10 and 11, which were com-
puted in a model of hadronic structure assuming Breit-
Wigner form factors for the low-lying vector resonances
in order to handle the scale matching. These results give
δEM = −0.0070(35) (see, e.g., Ref. 12). Using chiral per-
turbation theory [13,9] it has been shown that to leading
nontrivial order1 O(e2p2), the structure-dependent correc-
tions to δEM can be expressed in terms of the electromag-

1 In ChPT, physical amplitudes are systematically expanded
in powers of the external momenta of pseudo-Goldstone bosons
(π, K, η) and quark masses. When including electromagnetic

netic pion mass splitting. With the relative theoretical un-
certainty estimated at 25% to account for O(e2p4) effects
suppressed by chiral power counting, one obtains

δEM = −0.0070(18). (3)

With experimental measurements of the inclusive K�2

and π�2 decay rates and precise knowledge of the radiative
corrections, Eq. (2) can be used to obtain the value of the
ratio ����

Vus

Vud

����
2 f2

K

f2
π

. (4)

2.1.1 Theoretical determination of fK/fπ

To experimentally constrain the ratio |Vus/Vud|, or ulti-
mately, the value of |Vus| itself, a precise estimate of the
ratio of decay constants fK/fπ is needed. The analytic
evaluation of this ratio within ChPT at O(p4) depends
on unknown low-energy constants (LECs) and thus can-
not be predicted with high accuracy. Consequently, pre-
cise evaluations of fK/fπ are obtained only from lattice
QCD. However, ChPT still provides useful information
on this ratio: the SU(3) breaking of fK/fπ is linear in
m2

K −m2
π ∝ ms −mu and thus potentially large. For lat-

tice determinations of fK/fπ, this implies that the use of
very light pions is essential to obtain reliable results.

During the last few years, new simulations with NF =
2, NF = 2 + 1, and NF = 2 + 1 + 1 flavors of dy-
namical quarks have been performed by several groups
using many different lattice QCD formulations, such as
staggered (MILC Ref. 14), domain-wall (RBC [15]), over-
lap (JLQCD [16]), and Wilson-like fermions (BMW [17],
CERN-TOV/CLS [18], PACS-CS [19], and ETMC [20]).
The fundamental characteristic of these new-generation
unquenched studies is that recent technical and concep-
tual developments [21] have allowed pion masses well be-
low 300 MeV to be reached with large physical volumes (L
up to 4 fm). The PACS-CS [19] collaboration for example
has already simulated pions as light as mπ = 156 MeV for
NF = 2 + 1 (degenerate u and d quarks) and clover (first-
principle lattice QCD) fermions. The resulting PACS-CS
value, fK/fπ = 1.189(20) [19], however, is still plagued
by large uncertainties due to the small simulated vol-
ume, Lmπ � 2.3, with corresponding finite-size effects
δFSE = exp(−Lmπ) ≈ 10%.

The present status of lattice results for fK/fπ [22–32,
15,33,19,34–37] is summarized in Fig. 1. The lightest pion
mass simulated is listed for each determination. Moreover,
the continuum limit and smallest lattice spacing used are
also indicated whenever available. The agreement between
the different results is remarkable. The present overall ac-
curacy is about 1%.

Among the results for fK/fπ in Fig. 1, particularly
noteworthy are the NF = 2 + 1 studies from BMW [37],

corrections, the power counting is in e2m (p/4πfπ)2n. Powers of
the quark masses count as two powers of the external momenta
(O(p2) = O(mq)).
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The fK/fπ value from HPQCD/UKQCD [35] is

fK/fπ = 1.189(2)stat(7)syst. (7)

This result is in good agreement with the BMW and MILC
results. In particular, there is no apparent systematic dif-
ference between the results obtained using staggered and
clover fermions. This seems to suggest that possible issues
associated with the use of staggered fermions (in partic-
ular, the rooting issue [39–41]) are not relevant to the
determination of fK/fπ, at least at the present level of
accuracy.

In order to fully exploit the data set in Fig. 1, we aver-
age the results of the analyses from BMW, MILC ’09, and
HPQCD/UKQCD discussed above (Eqs. (5), (6), and (7)).
Since these results are consistent, we calculate the average
weighted by the statistical errors on the individual results.
This gives our reference central value and its statistical er-
ror. To obtain the total error on this average, we assume a
systematic error of 0.006, equal to the smallest systematic
error quoted among the three inputs. This is justified on
the basis of the agreement between the results. Adding the
statistical and systematic errors in quadrature, we obtain

fK/fπ = 1.193(6), (8)

which is quite consistent with all the results in Fig. 1, in-
cluding those obtained with staggered fermions and from
preliminary studies. In the above average, possible corre-
lations between the HPQCD/UKQCD and MILC results
due to the use of a common ensemble with a = 0.09 fm
has been neglected. However, since the valence quarks
are treated differently in these two studies, and the anal-
yses are completely different, any potential correlations
are diluted. The above average is consistent with both
the average from the most recent Lattice conference [6],
fK/fπ = 1.196(10) and the preliminary FLAG result [7],
fK/fπ = 1.190(10).

Updates from PACS-CS, RBC/UKQCD, and JLQCD,
in addition to new results (for example, an NF = 2+1+1
result from ETMC [42]), have already been announced
and will soon improve the present situation.

2.2 K�3 rates in the Standard Model

The K�3 decays provide ideal channels for the determi-
nation of |Vus|. The starting point of the analysis is the
expression for the photon-inclusive K → π�ν (K�3(γ)) de-
cay rate:

ΓK�3 =
G2

F m5
K

192π3
C2

KSEW

�
|Vus|f

K0π−

+ (0)
�2

IK�

×
�
1 + δK�

EM + δKπ
SU(2)

�2
,

(9)

where GF is the Fermi constant as determined from muon
decays, SEW = 1.0232(3) [43,8] is the short-distance elec-
troweak correction, CK is a Clebsch-Gordan coefficient
(1 for K0 and 1/

√
2 for K± decays), fK0π−

+ (0) is the

K0 → π− vector form factor at zero momentum trans-
fer, and IK� is a phase-space integral that is sensitive to
the momentum dependence of the form factors. The latter
describe the hadronic matrix elements

�π(pπ)|s̄γµu|K(pK)� =
(pπ + pK)µfKπ

+ (t) + (pK − pπ)µfKπ
− (t), (10)

where t = (pK − pπ)2 = (p� + pν)2. The vector form fac-
tor f+(t) represents the P-wave projection of the crossed
channel matrix element �0|s̄γµu|Kπ�. The scalar form fac-
tor f0(t) describes the S-wave projection, and in terms of
f+(t) and f−(t) reads

f0(t) = f+(t) +
t

m2
K −m2

π

f−(t). (11)

By construction, f0(0) = f+(0). Since f+(0) is not di-
rectly measurable, it is convenient to factor out fK0π−

+ (0)
in Eq. (9) and then normalize the form factors for all chan-
nels to fK0π−

+ (0), denoted simply as f+(0) in the following.
The normalized form factors are then defined as

f̄+(t) =
f+(t)
f+(0)

, f̄0(t) =
f0(t)
f+(0)

, f̄+(0) = f̄0(0) = 1. (12)

Finally, δK�
EM represents the channel-dependent long-distance

EM corrections (Sect. 2.2.2) and δKπ
SU(2) the correction for

isospin breaking (Sect. 2.2.3).
To extract |Vus| from K�3 decays using Eq. (9), one

must measure one or more photon-inclusive K�3 decay
rates, compute the phase space integrals from form-factor
measurements, and make use of theoretical results for f+(0),
δK�
EM, and δKπ

SU(2). We discuss the evaluation of these differ-
ent ingredients in the following.

2.2.1 Theoretical determination of f+(0)

The vector form factor at zero momentum transfer f+(0)
is the most critical hadronic quantity required for the de-
termination of |Vus| from K�3 decays via Eq. (9). By con-
struction, f+(0) is defined by the K0 → π− matrix ele-
ment of the vector current, Eq. (10), in the limit mu = md

and αem → 0, with kaon and pion masses kept at their
physical values.2 This hadronic quantity cannot be com-
puted in perturbative QCD, but is highly constrained by
SU(3) and chiral symmetry. In the chiral limit and, more
generally, in the SU(3) limit (mu = md = ms) the conser-
vation of the vector current implies f+(0) = 1. Expanding
around the chiral limit in powers of light quark masses one
can write

f+(0) = 1 + f2 + f4 + . . . (13)

where fn = O(mn
u,d,s/(4πfπ)n), and f2 and f4 are the

next-to-leading order (NLO) and next-to-next-to-leading
2 The choice of the K0 → π− form factor as the common

normalization is motivated by its smoothness in the mu = md

limit (see Sect. 2.2.3).

4 FlaviaNet Kaon Working Group: Evaluation of |Vus| and Standard Model tests from kaon data

The fK/fπ value from HPQCD/UKQCD [35] is

fK/fπ = 1.189(2)stat(7)syst. (7)

This result is in good agreement with the BMW and MILC
results. In particular, there is no apparent systematic dif-
ference between the results obtained using staggered and
clover fermions. This seems to suggest that possible issues
associated with the use of staggered fermions (in partic-
ular, the rooting issue [39–41]) are not relevant to the
determination of fK/fπ, at least at the present level of
accuracy.

In order to fully exploit the data set in Fig. 1, we aver-
age the results of the analyses from BMW, MILC ’09, and
HPQCD/UKQCD discussed above (Eqs. (5), (6), and (7)).
Since these results are consistent, we calculate the average
weighted by the statistical errors on the individual results.
This gives our reference central value and its statistical er-
ror. To obtain the total error on this average, we assume a
systematic error of 0.006, equal to the smallest systematic
error quoted among the three inputs. This is justified on
the basis of the agreement between the results. Adding the
statistical and systematic errors in quadrature, we obtain

fK/fπ = 1.193(6), (8)

which is quite consistent with all the results in Fig. 1, in-
cluding those obtained with staggered fermions and from
preliminary studies. In the above average, possible corre-
lations between the HPQCD/UKQCD and MILC results
due to the use of a common ensemble with a = 0.09 fm
has been neglected. However, since the valence quarks
are treated differently in these two studies, and the anal-
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are diluted. The above average is consistent with both
the average from the most recent Lattice conference [6],
fK/fπ = 1.196(10) and the preliminary FLAG result [7],
fK/fπ = 1.190(10).

Updates from PACS-CS, RBC/UKQCD, and JLQCD,
in addition to new results (for example, an NF = 2+1+1
result from ETMC [42]), have already been announced
and will soon improve the present situation.

2.2 K�3 rates in the Standard Model

The K�3 decays provide ideal channels for the determi-
nation of |Vus|. The starting point of the analysis is the
expression for the photon-inclusive K → π�ν (K�3(γ)) de-
cay rate:
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(1 for K0 and 1/
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+ (0) is the

K0 → π− vector form factor at zero momentum trans-
fer, and IK� is a phase-space integral that is sensitive to
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describe the hadronic matrix elements
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+ (t) + (pK − pπ)µfKπ
− (t), (10)

where t = (pK − pπ)2 = (p� + pν)2. The vector form fac-
tor f+(t) represents the P-wave projection of the crossed
channel matrix element �0|s̄γµu|Kπ�. The scalar form fac-
tor f0(t) describes the S-wave projection, and in terms of
f+(t) and f−(t) reads

f0(t) = f+(t) +
t

m2
K −m2

π

f−(t). (11)

By construction, f0(0) = f+(0). Since f+(0) is not di-
rectly measurable, it is convenient to factor out fK0π−

+ (0)
in Eq. (9) and then normalize the form factors for all chan-
nels to fK0π−

+ (0), denoted simply as f+(0) in the following.
The normalized form factors are then defined as

f̄+(t) =
f+(t)
f+(0)

, f̄0(t) =
f0(t)
f+(0)

, f̄+(0) = f̄0(0) = 1. (12)

Finally, δK�
EM represents the channel-dependent long-distance

EM corrections (Sect. 2.2.2) and δKπ
SU(2) the correction for
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must measure one or more photon-inclusive K�3 decay
rates, compute the phase space integrals from form-factor
measurements, and make use of theoretical results for f+(0),
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EM, and δKπ

SU(2). We discuss the evaluation of these differ-
ent ingredients in the following.

2.2.1 Theoretical determination of f+(0)

The vector form factor at zero momentum transfer f+(0)
is the most critical hadronic quantity required for the de-
termination of |Vus| from K�3 decays via Eq. (9). By con-
struction, f+(0) is defined by the K0 → π− matrix ele-
ment of the vector current, Eq. (10), in the limit mu = md

and αem → 0, with kaon and pion masses kept at their
physical values.2 This hadronic quantity cannot be com-
puted in perturbative QCD, but is highly constrained by
SU(3) and chiral symmetry. In the chiral limit and, more
generally, in the SU(3) limit (mu = md = ms) the conser-
vation of the vector current implies f+(0) = 1. Expanding
around the chiral limit in powers of light quark masses one
can write

f+(0) = 1 + f2 + f4 + . . . (13)
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 Physics results:
• |Vus|× f+(0)

• |Vus|/|Vud| × fK/fπ.

Global fits and averages:
• KL, KS, and K±, dominant BRs and lifetime.
• Parameterization of the K→π interaction (form factor)

2 FlaviaNet Kaon Working Group: Evaluation of |Vus| and Standard Model tests from kaon data

|Vus| obtained from data on K → π�ν (K�3) and K → µν
(Kµ2) decays and the corresponding constraints on devi-
ations from the V − A structure of the charged current;
(iii) tests of lepton universality in K�3 decays.

To carry out this analysis, values are needed for the
hadronic constants fK/fπ and f+(0), as discussed in
Sects. 2.1.1 and 2.2.1. These values are obtained using
lattice QCD, and various determinations have been per-
formed. The lattice QCD community, as represented by
the FlaviaNet Lattice Averaging Group (FLAG) [5–7], is
progressing towards convergence on a set of reference val-
ues, but in the meantime, for the purposes of this work, we
are led to propose our own. The criteria we have applied
in averaging lattice QCD results are motivated, but do not
represent the only set of possible choices. Our adoption of
these values is intended to illustrate what precision can
be obtained in testing the SM, given current experimen-
tal and theoretical results. In particular, wherever possi-
ble we quote results for quantities such as |Vus|f+(0) or
|Vus/Vud|×fK/fπ, which are independent of lattice inputs
and ready for use as new lattice results become available.

This paper is organized as follows. The phenomeno-
logical framework needed to describe K�3 and Kµ2 de-
cays within and beyond the SM is briefly reviewed in
Sect. 2. The experimental data is reviewed and combined
in Sect. 3. The results are presented and interpreted in
Sect. 4.

2 Phenomenological framework

2.1 K�2 rates in the Standard Model

Within the Standard Model, the ratio of photon-inclusive
K± → �±ν (K±

�2(γ)) to π± → �±ν (π±�2(γ)) decay rates can
be written as [8, 9]

ΓK�2

Γπ�2

=
|Vus|

2

|Vud|
2

f2
K

f2
π

mK(1−m2
�/m2

K)2

mπ(1−m2
�/m2

π)2
(1 + δEM) , (2)

where fK and fπ are the kaon and pion decay con-
stants, and δEM denotes the effect of long-distance elec-
tromagnetic corrections. Short-distance radiative effects
are universal and cancel from the ratio. For pointlike
kaons and pions, the long-distance electromagnetic cor-
rections depend only on the particle masses. The dom-
inant uncertainty on δEM comes from terms depending
on the hadronic structure. Most analyses to date make
use of the results of Refs. 10 and 11, which were com-
puted in a model of hadronic structure assuming Breit-
Wigner form factors for the low-lying vector resonances
in order to handle the scale matching. These results give
δEM = −0.0070(35) (see, e.g., Ref. 12). Using chiral per-
turbation theory [13,9] it has been shown that to leading
nontrivial order1 O(e2p2), the structure-dependent correc-
tions to δEM can be expressed in terms of the electromag-

1 In ChPT, physical amplitudes are systematically expanded
in powers of the external momenta of pseudo-Goldstone bosons
(π, K, η) and quark masses. When including electromagnetic

netic pion mass splitting. With the relative theoretical un-
certainty estimated at 25% to account for O(e2p4) effects
suppressed by chiral power counting, one obtains

δEM = −0.0070(18). (3)

With experimental measurements of the inclusive K�2

and π�2 decay rates and precise knowledge of the radiative
corrections, Eq. (2) can be used to obtain the value of the
ratio ����

Vus

Vud

����
2 f2

K

f2
π

. (4)

2.1.1 Theoretical determination of fK/fπ

To experimentally constrain the ratio |Vus/Vud|, or ulti-
mately, the value of |Vus| itself, a precise estimate of the
ratio of decay constants fK/fπ is needed. The analytic
evaluation of this ratio within ChPT at O(p4) depends
on unknown low-energy constants (LECs) and thus can-
not be predicted with high accuracy. Consequently, pre-
cise evaluations of fK/fπ are obtained only from lattice
QCD. However, ChPT still provides useful information
on this ratio: the SU(3) breaking of fK/fπ is linear in
m2

K −m2
π ∝ ms −mu and thus potentially large. For lat-

tice determinations of fK/fπ, this implies that the use of
very light pions is essential to obtain reliable results.

During the last few years, new simulations with NF =
2, NF = 2 + 1, and NF = 2 + 1 + 1 flavors of dy-
namical quarks have been performed by several groups
using many different lattice QCD formulations, such as
staggered (MILC Ref. 14), domain-wall (RBC [15]), over-
lap (JLQCD [16]), and Wilson-like fermions (BMW [17],
CERN-TOV/CLS [18], PACS-CS [19], and ETMC [20]).
The fundamental characteristic of these new-generation
unquenched studies is that recent technical and concep-
tual developments [21] have allowed pion masses well be-
low 300 MeV to be reached with large physical volumes (L
up to 4 fm). The PACS-CS [19] collaboration for example
has already simulated pions as light as mπ = 156 MeV for
NF = 2 + 1 (degenerate u and d quarks) and clover (first-
principle lattice QCD) fermions. The resulting PACS-CS
value, fK/fπ = 1.189(20) [19], however, is still plagued
by large uncertainties due to the small simulated vol-
ume, Lmπ � 2.3, with corresponding finite-size effects
δFSE = exp(−Lmπ) ≈ 10%.

The present status of lattice results for fK/fπ [22–32,
15,33,19,34–37] is summarized in Fig. 1. The lightest pion
mass simulated is listed for each determination. Moreover,
the continuum limit and smallest lattice spacing used are
also indicated whenever available. The agreement between
the different results is remarkable. The present overall ac-
curacy is about 1%.

Among the results for fK/fπ in Fig. 1, particularly
noteworthy are the NF = 2 + 1 studies from BMW [37],

corrections, the power counting is in e2m (p/4πfπ)2n. Powers of
the quark masses count as two powers of the external momenta
(O(p2) = O(mq)).
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The fK/fπ value from HPQCD/UKQCD [35] is

fK/fπ = 1.189(2)stat(7)syst. (7)

This result is in good agreement with the BMW and MILC
results. In particular, there is no apparent systematic dif-
ference between the results obtained using staggered and
clover fermions. This seems to suggest that possible issues
associated with the use of staggered fermions (in partic-
ular, the rooting issue [39–41]) are not relevant to the
determination of fK/fπ, at least at the present level of
accuracy.

In order to fully exploit the data set in Fig. 1, we aver-
age the results of the analyses from BMW, MILC ’09, and
HPQCD/UKQCD discussed above (Eqs. (5), (6), and (7)).
Since these results are consistent, we calculate the average
weighted by the statistical errors on the individual results.
This gives our reference central value and its statistical er-
ror. To obtain the total error on this average, we assume a
systematic error of 0.006, equal to the smallest systematic
error quoted among the three inputs. This is justified on
the basis of the agreement between the results. Adding the
statistical and systematic errors in quadrature, we obtain

fK/fπ = 1.193(6), (8)

which is quite consistent with all the results in Fig. 1, in-
cluding those obtained with staggered fermions and from
preliminary studies. In the above average, possible corre-
lations between the HPQCD/UKQCD and MILC results
due to the use of a common ensemble with a = 0.09 fm
has been neglected. However, since the valence quarks
are treated differently in these two studies, and the anal-
yses are completely different, any potential correlations
are diluted. The above average is consistent with both
the average from the most recent Lattice conference [6],
fK/fπ = 1.196(10) and the preliminary FLAG result [7],
fK/fπ = 1.190(10).

Updates from PACS-CS, RBC/UKQCD, and JLQCD,
in addition to new results (for example, an NF = 2+1+1
result from ETMC [42]), have already been announced
and will soon improve the present situation.

2.2 K�3 rates in the Standard Model

The K�3 decays provide ideal channels for the determi-
nation of |Vus|. The starting point of the analysis is the
expression for the photon-inclusive K → π�ν (K�3(γ)) de-
cay rate:

ΓK�3 =
G2

F m5
K

192π3
C2

KSEW

�
|Vus|f

K0π−

+ (0)
�2

IK�

×
�
1 + δK�

EM + δKπ
SU(2)

�2
,

(9)

where GF is the Fermi constant as determined from muon
decays, SEW = 1.0232(3) [43,8] is the short-distance elec-
troweak correction, CK is a Clebsch-Gordan coefficient
(1 for K0 and 1/

√
2 for K± decays), fK0π−

+ (0) is the

K0 → π− vector form factor at zero momentum trans-
fer, and IK� is a phase-space integral that is sensitive to
the momentum dependence of the form factors. The latter
describe the hadronic matrix elements

�π(pπ)|s̄γµu|K(pK)� =
(pπ + pK)µfKπ

+ (t) + (pK − pπ)µfKπ
− (t), (10)

where t = (pK − pπ)2 = (p� + pν)2. The vector form fac-
tor f+(t) represents the P-wave projection of the crossed
channel matrix element �0|s̄γµu|Kπ�. The scalar form fac-
tor f0(t) describes the S-wave projection, and in terms of
f+(t) and f−(t) reads

f0(t) = f+(t) +
t

m2
K −m2

π

f−(t). (11)

By construction, f0(0) = f+(0). Since f+(0) is not di-
rectly measurable, it is convenient to factor out fK0π−

+ (0)
in Eq. (9) and then normalize the form factors for all chan-
nels to fK0π−

+ (0), denoted simply as f+(0) in the following.
The normalized form factors are then defined as

f̄+(t) =
f+(t)
f+(0)

, f̄0(t) =
f0(t)
f+(0)

, f̄+(0) = f̄0(0) = 1. (12)

Finally, δK�
EM represents the channel-dependent long-distance

EM corrections (Sect. 2.2.2) and δKπ
SU(2) the correction for

isospin breaking (Sect. 2.2.3).
To extract |Vus| from K�3 decays using Eq. (9), one

must measure one or more photon-inclusive K�3 decay
rates, compute the phase space integrals from form-factor
measurements, and make use of theoretical results for f+(0),
δK�
EM, and δKπ

SU(2). We discuss the evaluation of these differ-
ent ingredients in the following.

2.2.1 Theoretical determination of f+(0)

The vector form factor at zero momentum transfer f+(0)
is the most critical hadronic quantity required for the de-
termination of |Vus| from K�3 decays via Eq. (9). By con-
struction, f+(0) is defined by the K0 → π− matrix ele-
ment of the vector current, Eq. (10), in the limit mu = md

and αem → 0, with kaon and pion masses kept at their
physical values.2 This hadronic quantity cannot be com-
puted in perturbative QCD, but is highly constrained by
SU(3) and chiral symmetry. In the chiral limit and, more
generally, in the SU(3) limit (mu = md = ms) the conser-
vation of the vector current implies f+(0) = 1. Expanding
around the chiral limit in powers of light quark masses one
can write

f+(0) = 1 + f2 + f4 + . . . (13)

where fn = O(mn
u,d,s/(4πfπ)n), and f2 and f4 are the

next-to-leading order (NLO) and next-to-next-to-leading
2 The choice of the K0 → π− form factor as the common

normalization is motivated by its smoothness in the mu = md

limit (see Sect. 2.2.3).
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error quoted among the three inputs. This is justified on
the basis of the agreement between the results. Adding the
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which is quite consistent with all the results in Fig. 1, in-
cluding those obtained with staggered fermions and from
preliminary studies. In the above average, possible corre-
lations between the HPQCD/UKQCD and MILC results
due to the use of a common ensemble with a = 0.09 fm
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where GF is the Fermi constant as determined from muon
decays, SEW = 1.0232(3) [43,8] is the short-distance elec-
troweak correction, CK is a Clebsch-Gordan coefficient
(1 for K0 and 1/
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2 for K± decays), fK0π−

+ (0) is the

K0 → π− vector form factor at zero momentum trans-
fer, and IK� is a phase-space integral that is sensitive to
the momentum dependence of the form factors. The latter
describe the hadronic matrix elements

�π(pπ)|s̄γµu|K(pK)� =
(pπ + pK)µfKπ

+ (t) + (pK − pπ)µfKπ
− (t), (10)

where t = (pK − pπ)2 = (p� + pν)2. The vector form fac-
tor f+(t) represents the P-wave projection of the crossed
channel matrix element �0|s̄γµu|Kπ�. The scalar form fac-
tor f0(t) describes the S-wave projection, and in terms of
f+(t) and f−(t) reads

f0(t) = f+(t) +
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By construction, f0(0) = f+(0). Since f+(0) is not di-
rectly measurable, it is convenient to factor out fK0π−
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in Eq. (9) and then normalize the form factors for all chan-
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+ (0), denoted simply as f+(0) in the following.
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Finally, δK�
EM represents the channel-dependent long-distance

EM corrections (Sect. 2.2.2) and δKπ
SU(2) the correction for

isospin breaking (Sect. 2.2.3).
To extract |Vus| from K�3 decays using Eq. (9), one

must measure one or more photon-inclusive K�3 decay
rates, compute the phase space integrals from form-factor
measurements, and make use of theoretical results for f+(0),
δK�
EM, and δKπ

SU(2). We discuss the evaluation of these differ-
ent ingredients in the following.

2.2.1 Theoretical determination of f+(0)

The vector form factor at zero momentum transfer f+(0)
is the most critical hadronic quantity required for the de-
termination of |Vus| from K�3 decays via Eq. (9). By con-
struction, f+(0) is defined by the K0 → π− matrix ele-
ment of the vector current, Eq. (10), in the limit mu = md

and αem → 0, with kaon and pion masses kept at their
physical values.2 This hadronic quantity cannot be com-
puted in perturbative QCD, but is highly constrained by
SU(3) and chiral symmetry. In the chiral limit and, more
generally, in the SU(3) limit (mu = md = ms) the conser-
vation of the vector current implies f+(0) = 1. Expanding
around the chiral limit in powers of light quark masses one
can write

f+(0) = 1 + f2 + f4 + . . . (13)

where fn = O(mn
u,d,s/(4πfπ)n), and f2 and f4 are the

next-to-leading order (NLO) and next-to-next-to-leading
2 The choice of the K0 → π− form factor as the common

normalization is motivated by its smoothness in the mu = md

limit (see Sect. 2.2.3).
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KL leading branching ratios and τL

5+3 KTeV ratios
NA48 Ke3 /2tr and Γ(3π0) 
4 KLOE BRs
KLOE, NA48 π+π−/Kl3
KLOE, NA48  γγ/3π0

PDG ETAFIT for π+π−/π0π0

KLOE τL from 3π0

Vosburgh ‘72 τL 

21 input measurements:

10 free parameters, 1 constraint: ΣBR=1

All π+π−/Kl3 measurements are fully inclusive of inner bremsstrahlung
KLOE measurement is fully inclusive of DE, negligible in KTeV one
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Parameter Value Source Ref. Pull

τKL 50.92(30) ns KLOE [88] −0.8
τKL 51.54(44) ns Vosburgh [89] +0.9
BR(Ke3) 0.4049(21) KLOE [90] −1.3
BR(Kµ3) 0.2726(16) KLOE [90] +0.5
BR(Kµ3)/BR(Ke3) 0.6640(26) KTeV [91] −1.1
BR(3π0

) 0.2018(24) KLOE [90] +2.4
BR(3π0

)/BR(Ke3) 0.4782(55) KTeV [91] −0.5
BR(π+π−π0

) 0.1276(15) KLOE [90] +1.0
BR(π+π−π0

)/BR(Ke3) 0.3078(18) KTeV [91] −0.8
BR(π+π−)/BR(Ke3) 0.004856(29) KTeV [91] +0.3
BR(π+π−)/BR(Ke3) 0.004826(27) NA48 [92] −0.8
BR(π+π−)/BR(Kµ3) 0.007275(68) KLOE [93] −1.5
BR(Ke3)/BR(2 tracks) 0.4978(35) NA48 [94] −0.8
BR(π0π0

)/BR(3π0
) 0.004446(25) KTeV [91] +0.6

BR(π0π0
)/BR(π+π−) 0.4391(13) PDG ETAFIT [87] −0.5

BR(γγ)/BR(3π0
) 0.00279(3) KLOE [95] −0.5

BR(γγ)/BR(3π0
) 0.00281(2) NA48 [96] +0.3

BR(π+π−γ)/BR(π+π−) 0.0208(3) KTeV [97] 0.0
BR(π+π−γDE)/BR(π+π−γ) 0.689(21) KTeV [98] +0.2
BR(π+π−γDE)/BR(π+π−γ) 0.683(11) KTeV [97] −0.1
BR(π+π−γDE)/BR(π+π−γ) 0.685(41) E731 [99] 0.0

Table 2. Input data used for the fit to KL BRs and lifetime. For each measurement, the normalized residual with respect to

the results of the fit is listed in the last column.

Parameter Value S Correlation matrix (%)

BR(Ke3) 0.4056(9) 1.3 −29 −45 −30 +6 +10 −27 −27 +8 +15

BR(Kµ3) 0.2704(10) 1.5 −50 0 −3 −10 −32 −35 +13 −16

BR(3π0
) 0.1952(9) 1.2 −37 −1 +9 +56 +63 −13 +12

BR(π+π−π0
) 0.1254(6) 1.3 −4 −16 −15 −21 −5 −20

BR(π+π−) 1.967(7)× 10
−3

1.1 +14 +34 +1 −3 +19

BR(π+π−γ) 4.15(9)× 10
−5

1.6 +16 +8 −3 +74

BR(π+π−γDE) 2.84(8)× 10
−5

1.3 +35 −10 +22

BR(2π0
) 8.65(4)× 10

−4
1.4 −8 +10

BR(γγ) 5.47(4)× 10
−4

1.1 −4

τKL 51.16(21) ns 1.1

Table 3. Results of fit to KL BRs and lifetime.

38 40

PDG ’04

PDG ’09

This fit

BR(Ke3) [%]

27 27.5

BR(Kµ3) [%]

20 21

BR(3!0) [%]

0.2 0.21

BR(!+!-) [%]

Fig. 3. Evolution of average values for main KL BRs.

for each input are listed in Table 2. The evolution of the
average values of the BRs for K�3 decays and for the im-
portant normalization channels is shown in Fig. 3.

As seen from Fig. 3, both our fit and the recent PDG
fit [87] differ substantially in their results from the 2004
PDG fit [100]. This is due to the addition to the world
data set after 2004 of most of the recent data discussed
above, and to the subsequent elimination of numerous old

measurements—many with questionable radiative correc-
tions and/or unreported correlations—used in previous
fits. Between 2004 and today, the world-average BRs for
the Ke3, 3π0, and π+π− decays have shifted by +6 σ,
−6 σ, and −5 σ, respectively, leading to the following con-
sequences:
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Evolution of the average BR values

This fit χ2/ndf = 19.8/12 (7.1%)
Minor differences wrt PDG04:
• elimination of numerous old measurements 

BR’s shifted by 6σ, -6σ, -5σ
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Table 2. Input data used for the fit to KL BRs and lifetime. For each measurement, the normalized residual with respect to

the results of the fit is listed in the last column.

Parameter Value S Correlation matrix (%)

BR(Ke3) 0.4056(9) 1.3 −29 −45 −30 +6 +10 −27 −27 +8 +15

BR(Kµ3) 0.2704(10) 1.5 −50 0 −3 −10 −32 −35 +13 −16
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for each input are listed in Table 2. The evolution of the
average values of the BRs for K�3 decays and for the im-
portant normalization channels is shown in Fig. 3.

As seen from Fig. 3, both our fit and the recent PDG
fit [87] differ substantially in their results from the 2004
PDG fit [100]. This is due to the addition to the world
data set after 2004 of most of the recent data discussed
above, and to the subsequent elimination of numerous old

measurements—many with questionable radiative correc-
tions and/or unreported correlations—used in previous
fits. Between 2004 and today, the world-average BRs for
the Ke3, 3π0, and π+π− decays have shifted by +6 σ,
−6 σ, and −5 σ, respectively, leading to the following con-
sequences:
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KS leading branching ratios and τS

6 input measurements:

5 free parameters: KSππ, KSπ0π0,KSe3,KSµ3, τS, 
1 constraint: ΣBR=1

KLOE meas. completely determine 
the leading BR values.

This fit χ2/ndf = 0.015/1 (90%)   S≈1 for any of the output values.

 KLOE BR(Ke3)/BR(π+π−)
 KLOE BR(π+π−)/BR(π0π0)
 Universal lepton coupling
 NA48 BR(KSe3)/BR(KLe3)
 τS: non CPT-constrained fit value, 
 2002 NA48 and 2003 KTeV measurements
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– The world-average value for the ratio Γ (Kµ3)/Γ (Ke3)
changes from 0.701(8) to 0.6668(28), procuring better
agreement with the value expected from lepton univer-
sality, as discussed in Sect. 4.3.

– The world-average value for the amplitude ratio |η+−|,
a parameter of indirect CP violation in the KSKL

system, changes from 2.286(18)× 10−3 to 2.231(10)×
10−3, a −2.7 σ difference. (Here we are interested in
the effect of the new KL data, so we use the results of
the fit to KS rate data in Table 4 in both cases.)

Figure 3 also shows that differences between the results
of our fit and the most recent PDG fit are minor. These
fits differ principally in the following respects:

– The PDG fit uses five of the six KTeV values for the
dominant KL BRs, while our fit uses the five ratios
directly.

– The PDG fit uses three of the four KLOE values for
the dominant KL BRs obtained after imposing the con-
straint on the sum, as well as the KLOE value of τKL

obtained by imposing this constraint. We use the orig-
inal KLOE values with their lifetime dependence and
omit the value of τKL obtained from the constraint on
the sum.

– The PDG fit includes BR(e+e−γ) as a free parameter,
and thus makes use of four measurements not used in
our fit.

Our treatment of the contribution from DE in the π+π−γ
decay is the same as that used by the PDG, but we omit
the measurement of BR(π+π−γ)/BR(π+π−) from E731
[99], because while the photon energy cutoff in the nu-
merator is well defined (E∗

γ > 20 MeV), the requirement
used in this measurement for events in the normalization
channel to contain no calorimeter clusters other than those
from the π+π− leads to difficulties of interpretation.

3.3 Dominant KS branching ratios and τKS

The KLOE collaboration has measured the ratio
BR(KS → πeν)/BR(KS → π+π−) = 10.19(13) × 10−3

with 1.3% precision [101], making possible an independent
determination of |Vus|f+(0) to better than 0.7%. In [102],
they combine the above measurement with their measure-
ment BR(KS → π+π−)/BR(KS → π0π0) = 2.2459(54).
Using the constraint that the KS BRs must sum to unity
and assuming the universality of lepton couplings, they
determine the BRs for the π+π−, π0π0, Ke3, and Kµ3

decays.
Our fit is an extension of the analysis in [102]. We per-

form a fit to the data on the KS BRs to π+π−, π0π0, and
Ke3 that uses, in addition to the above two measurements:

– the measurement from NA48, Γ (KS → πeν)/Γ (KL →
πeν) = 0.993(34) [103], where the denominator is ob-
tained from the results of our KL fit;

– the measurements from NA48, τKS = 89.598(70) ps
[104], and KTeV, τKS = 89.58(13) ps [105], both ob-
tained without the assumption of CPT symmetry;

Parameter Value Correlation matrix (%)
BR(π+π−) 0.6920(5) −100 +4 +3 +0
BR(π0π0) 0.3069(5) −6 −6 +0
BR(Ke3) 7.05(8)× 10−4 +98 +1
BR(Kµ3) 4.69(6)× 10−4 +1
τKS 89.59(6) ps

Table 4. Results of fit to KS BRs and lifetime.

– the result BR(Kµ3)/BR(Ke3) = 0.6655(15) obtained
from the assumption of universal lepton couplings, the
values of Λ+ and ln C, the parameters of the dispersive
representation of the vector and scalar form factors,
obtained from our fit to form-factor data discussed in
Sect. 3.5.2, and the long-distance electromagnetic cor-
rections discussed in Sect. 2.2.

The free parameters are the four BRs listed above plus
τKS . With six inputs and one constraint (on the sum of the
BRs), the fit has one degree of freedom and gives χ2/ndf =
0.015/1 (P = 90%). The scale factor S is not different from
unity for any of the output values. The results of the fit
are listed in Table 4.

3.4 Dominant K± branching ratios and τK±

Several recent measurements contribute significant new in-
formation on the rates for the dominant K± decays. In
addition, we have recently carried out a comprehensive,
critical survey of the K± data set, which led to the elim-
ination of numerous older measurements previously used
in the fit. The input data used in our current fit to deter-
mine the dominant K± BRs and lifetime are summarized
in Table 5.

The 2003 measurement of BR(K+
e3) by E865 [116]

was the first of the recent-generation measurements of
semileptonic kaon BRs, and gave a value for |Vus| consis-
tent with unitarity. The quantity actually measured was
BR(K+

e3)/(BR(π+π0) + BR(K+
µ3) + BR(π+π0π0)), where

one π0 in the final state was required to undergo Dalitz
decay. (Throughout the remainder of this section, we use
π to denote the charged pion when no confusion results.)

In 2007, the NA48/2 collaboration published
measurements of the ratios BR(Ke3)/BR(ππ0) and
BR(Kµ3)/BR(ππ0) obtained with simultaneous K+ and
K− beams [117,121]. For each type of K�3 decay (i.e., to e
and µ), about 50k K+ and 30k K− decays were collected.
The results for these ratios in Table 5 are correlated with
ρ = +0.19 [122]. The dominant uncertainties are from
sample statistics.

ISTRA+ has also performed a measurement of
BR(K−

e3)/BR(ππ0) with 0.6% precision [123]. The result,
however, has not been officially published and is therefore
not used in our fit.

KLOE has measured the absolute BRs for the Ke3 and
Kµ3 decays [115]. In φ→ K+K− events, K+ decays into
µ+ν or π+π0 are used to tag a K− beam, and vice versa.
KLOE performs four separate measurements for each K�3

BR, corresponding to the different combinations of kaon
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K± leading branching ratios and τ±

KLOE + 3 old τ
KLOE BR(µν)
KLOE Ke3, Kµ3, and Kπ2 BRs
NA48/2  Ke3/π π0, Kµ3/π π0

E865  Ke3/Kdal
3 old ππ0/µν

KEK-E246  Kµ3/Ke3
1 old + 1 KLOE results on 3π

17 input measurements:

7 free parameters, 
1 constraint: ΣBR=1

Don’t use the result from Lobkowicz (τ),
don’t use the BRs from Chiang:
• 6 BRs constrained to sum to unit.
• the correlation matrix not available
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Parameter Value S Correlation matrix (%)

BR(Kµ2) 63.47(18)% 1.3 −39 −75 −33 −28 −36 +12

BR(ππ0
) 20.61(8)% 1.1 −26 +61 +38 −13 −11

BR(πππ) 5.73(16)% 1.2 −22 −17 +36 −5

BR(Ke3) 5.078(31)% 1.3 +47 −10 −13

BR(Kµ3) 3.359(32)% 1.9 −8 −4

BR(ππ0π0
) 1.757(24)% 1.0 −1

τK± 12.384(15) ns 1.2

Table 6. Results of fit to K±
BRs and lifetime.
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BR(""0) [%]

Fig. 4. Evolution of average values for main K±
BRs.

Experiment λ�
+ × 10

3 λ��
+ × 10

3 ρ(λ�
+,λ��

+)

KLOE 25.5 ± 1.8 1.4 ± 0.8 −0.95
KTeV 21.67 ± 1.99 2.87 ± 0.78 −0.97
NA48 28.0 ± 2.4 0.4 ± 0.9 −0.88
ISTRA+ 24.85 ± 1.66 1.92 ± 0.94 −0.95

Table 7. Quadratic form-factor parameters for Ke3 decays.

The values from NA48 and ISTRA+ have been converted for

use with the notation of Eq. (28). The values of ρ from NA48

and ISTRA+ were communicated privately [122,127].

3.5 Measurements of K�3 form-factor parameters

3.5.1 Ke3 form-factor parameters

KLOE [128], KTeV [129], NA48 [130], and ISTRA+ [131]

have all performed recent measurements of the quadratic

parameters λ�+ and λ��+ of the vector form factor for Ke3

decays (see Eq. (28)). The data are listed in Table 7 and

represented graphically in Fig. 5.

Table 8 gives the results of a fit to the KL and K−

data in the first column, and to the KL data only in the

second column. With correlations taken into account, both

fits give good values of χ2/ndf. The significance of the

quadratic term is 4.2σ from the fit to all data, and 3.5σ

0
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KTeV

KLOE

NA48

ISTRA+

This fit

0

2

4

20 25 30
!+' " 103

! +
" 
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10
3

Fig. 5. Recent measurements of Ke3 vector form-factor pa-

rameters. The yellow ellipse shows the result of a fit to all

data.

from the fit to KL data only. Including or excluding the

K− slopes has little impact on the values of λ�+ and λ��+; in



|Vud|  & |Vus| determination from kaon decays        P. Massarotti        FP&CPV torino May 26, 2010 11

Evolution of the average BR values
• This fit χ2/ndf = 25.8/11 (0.69%); PDG09 fit: χ2/ndf = 52/25 (0.13%)
• some conflict among newer meas. involving BR(Ke3): 
   the pulls are +0.6 and -2.1 for NA48 and KLOE  respectively
•some conflict among newer meas. involving BR(Kµ3): 
   the pulls are +1.0 and -3.2 for NA48 and KLOE  respectively

   Evolution of the BR(Kℓ3)  
   and of the important 
   normalization channels.
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Parameter Value S Correlation matrix (%)
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Table 7. Quadratic form-factor parameters for Ke3 decays.
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use with the notation of Eq. (28). The values of ρ from NA48

and ISTRA+ were communicated privately [122,127].

3.5 Measurements of K�3 form-factor parameters

3.5.1 Ke3 form-factor parameters

KLOE [128], KTeV [129], NA48 [130], and ISTRA+ [131]

have all performed recent measurements of the quadratic

parameters λ�+ and λ��+ of the vector form factor for Ke3

decays (see Eq. (28)). The data are listed in Table 7 and

represented graphically in Fig. 5.

Table 8 gives the results of a fit to the KL and K−

data in the first column, and to the KL data only in the

second column. With correlations taken into account, both

fits give good values of χ2/ndf. The significance of the

quadratic term is 4.2σ from the fit to all data, and 3.5σ
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from the fit to KL data only. Including or excluding the

K− slopes has little impact on the values of λ�+ and λ��+; in
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 Physics results:
• |Vus|× f+(0)

• |Vus|/|Vud| × fK/fπ.

Global fits and averages:
• KL, KS, and K±, dominant BRs and lifetime.
• Parameterization of the K→π interaction (form factor)

2 FlaviaNet Kaon Working Group: Evaluation of |Vus| and Standard Model tests from kaon data

|Vus| obtained from data on K → π�ν (K�3) and K → µν
(Kµ2) decays and the corresponding constraints on devi-
ations from the V − A structure of the charged current;
(iii) tests of lepton universality in K�3 decays.

To carry out this analysis, values are needed for the
hadronic constants fK/fπ and f+(0), as discussed in
Sects. 2.1.1 and 2.2.1. These values are obtained using
lattice QCD, and various determinations have been per-
formed. The lattice QCD community, as represented by
the FlaviaNet Lattice Averaging Group (FLAG) [5–7], is
progressing towards convergence on a set of reference val-
ues, but in the meantime, for the purposes of this work, we
are led to propose our own. The criteria we have applied
in averaging lattice QCD results are motivated, but do not
represent the only set of possible choices. Our adoption of
these values is intended to illustrate what precision can
be obtained in testing the SM, given current experimen-
tal and theoretical results. In particular, wherever possi-
ble we quote results for quantities such as |Vus|f+(0) or
|Vus/Vud|×fK/fπ, which are independent of lattice inputs
and ready for use as new lattice results become available.

This paper is organized as follows. The phenomeno-
logical framework needed to describe K�3 and Kµ2 de-
cays within and beyond the SM is briefly reviewed in
Sect. 2. The experimental data is reviewed and combined
in Sect. 3. The results are presented and interpreted in
Sect. 4.

2 Phenomenological framework

2.1 K�2 rates in the Standard Model

Within the Standard Model, the ratio of photon-inclusive
K± → �±ν (K±

�2(γ)) to π± → �±ν (π±�2(γ)) decay rates can
be written as [8, 9]

ΓK�2

Γπ�2

=
|Vus|

2

|Vud|
2

f2
K

f2
π

mK(1−m2
�/m2

K)2

mπ(1−m2
�/m2

π)2
(1 + δEM) , (2)

where fK and fπ are the kaon and pion decay con-
stants, and δEM denotes the effect of long-distance elec-
tromagnetic corrections. Short-distance radiative effects
are universal and cancel from the ratio. For pointlike
kaons and pions, the long-distance electromagnetic cor-
rections depend only on the particle masses. The dom-
inant uncertainty on δEM comes from terms depending
on the hadronic structure. Most analyses to date make
use of the results of Refs. 10 and 11, which were com-
puted in a model of hadronic structure assuming Breit-
Wigner form factors for the low-lying vector resonances
in order to handle the scale matching. These results give
δEM = −0.0070(35) (see, e.g., Ref. 12). Using chiral per-
turbation theory [13,9] it has been shown that to leading
nontrivial order1 O(e2p2), the structure-dependent correc-
tions to δEM can be expressed in terms of the electromag-

1 In ChPT, physical amplitudes are systematically expanded
in powers of the external momenta of pseudo-Goldstone bosons
(π, K, η) and quark masses. When including electromagnetic

netic pion mass splitting. With the relative theoretical un-
certainty estimated at 25% to account for O(e2p4) effects
suppressed by chiral power counting, one obtains

δEM = −0.0070(18). (3)

With experimental measurements of the inclusive K�2

and π�2 decay rates and precise knowledge of the radiative
corrections, Eq. (2) can be used to obtain the value of the
ratio ����

Vus

Vud

����
2 f2

K

f2
π

. (4)

2.1.1 Theoretical determination of fK/fπ
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CERN-TOV/CLS [18], PACS-CS [19], and ETMC [20]).
The fundamental characteristic of these new-generation
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tual developments [21] have allowed pion masses well be-
low 300 MeV to be reached with large physical volumes (L
up to 4 fm). The PACS-CS [19] collaboration for example
has already simulated pions as light as mπ = 156 MeV for
NF = 2 + 1 (degenerate u and d quarks) and clover (first-
principle lattice QCD) fermions. The resulting PACS-CS
value, fK/fπ = 1.189(20) [19], however, is still plagued
by large uncertainties due to the small simulated vol-
ume, Lmπ � 2.3, with corresponding finite-size effects
δFSE = exp(−Lmπ) ≈ 10%.

The present status of lattice results for fK/fπ [22–32,
15,33,19,34–37] is summarized in Fig. 1. The lightest pion
mass simulated is listed for each determination. Moreover,
the continuum limit and smallest lattice spacing used are
also indicated whenever available. The agreement between
the different results is remarkable. The present overall ac-
curacy is about 1%.

Among the results for fK/fπ in Fig. 1, particularly
noteworthy are the NF = 2 + 1 studies from BMW [37],

corrections, the power counting is in e2m (p/4πfπ)2n. Powers of
the quark masses count as two powers of the external momenta
(O(p2) = O(mq)).
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The fK/fπ value from HPQCD/UKQCD [35] is

fK/fπ = 1.189(2)stat(7)syst. (7)

This result is in good agreement with the BMW and MILC
results. In particular, there is no apparent systematic dif-
ference between the results obtained using staggered and
clover fermions. This seems to suggest that possible issues
associated with the use of staggered fermions (in partic-
ular, the rooting issue [39–41]) are not relevant to the
determination of fK/fπ, at least at the present level of
accuracy.

In order to fully exploit the data set in Fig. 1, we aver-
age the results of the analyses from BMW, MILC ’09, and
HPQCD/UKQCD discussed above (Eqs. (5), (6), and (7)).
Since these results are consistent, we calculate the average
weighted by the statistical errors on the individual results.
This gives our reference central value and its statistical er-
ror. To obtain the total error on this average, we assume a
systematic error of 0.006, equal to the smallest systematic
error quoted among the three inputs. This is justified on
the basis of the agreement between the results. Adding the
statistical and systematic errors in quadrature, we obtain

fK/fπ = 1.193(6), (8)

which is quite consistent with all the results in Fig. 1, in-
cluding those obtained with staggered fermions and from
preliminary studies. In the above average, possible corre-
lations between the HPQCD/UKQCD and MILC results
due to the use of a common ensemble with a = 0.09 fm
has been neglected. However, since the valence quarks
are treated differently in these two studies, and the anal-
yses are completely different, any potential correlations
are diluted. The above average is consistent with both
the average from the most recent Lattice conference [6],
fK/fπ = 1.196(10) and the preliminary FLAG result [7],
fK/fπ = 1.190(10).

Updates from PACS-CS, RBC/UKQCD, and JLQCD,
in addition to new results (for example, an NF = 2+1+1
result from ETMC [42]), have already been announced
and will soon improve the present situation.

2.2 K�3 rates in the Standard Model

The K�3 decays provide ideal channels for the determi-
nation of |Vus|. The starting point of the analysis is the
expression for the photon-inclusive K → π�ν (K�3(γ)) de-
cay rate:

ΓK�3 =
G2

F m5
K

192π3
C2

KSEW

�
|Vus|f

K0π−

+ (0)
�2

IK�

×
�
1 + δK�

EM + δKπ
SU(2)

�2
,

(9)

where GF is the Fermi constant as determined from muon
decays, SEW = 1.0232(3) [43,8] is the short-distance elec-
troweak correction, CK is a Clebsch-Gordan coefficient
(1 for K0 and 1/

√
2 for K± decays), fK0π−

+ (0) is the

K0 → π− vector form factor at zero momentum trans-
fer, and IK� is a phase-space integral that is sensitive to
the momentum dependence of the form factors. The latter
describe the hadronic matrix elements

�π(pπ)|s̄γµu|K(pK)� =
(pπ + pK)µfKπ

+ (t) + (pK − pπ)µfKπ
− (t), (10)

where t = (pK − pπ)2 = (p� + pν)2. The vector form fac-
tor f+(t) represents the P-wave projection of the crossed
channel matrix element �0|s̄γµu|Kπ�. The scalar form fac-
tor f0(t) describes the S-wave projection, and in terms of
f+(t) and f−(t) reads

f0(t) = f+(t) +
t

m2
K −m2

π

f−(t). (11)

By construction, f0(0) = f+(0). Since f+(0) is not di-
rectly measurable, it is convenient to factor out fK0π−

+ (0)
in Eq. (9) and then normalize the form factors for all chan-
nels to fK0π−

+ (0), denoted simply as f+(0) in the following.
The normalized form factors are then defined as

f̄+(t) =
f+(t)
f+(0)

, f̄0(t) =
f0(t)
f+(0)

, f̄+(0) = f̄0(0) = 1. (12)

Finally, δK�
EM represents the channel-dependent long-distance

EM corrections (Sect. 2.2.2) and δKπ
SU(2) the correction for

isospin breaking (Sect. 2.2.3).
To extract |Vus| from K�3 decays using Eq. (9), one

must measure one or more photon-inclusive K�3 decay
rates, compute the phase space integrals from form-factor
measurements, and make use of theoretical results for f+(0),
δK�
EM, and δKπ

SU(2). We discuss the evaluation of these differ-
ent ingredients in the following.

2.2.1 Theoretical determination of f+(0)

The vector form factor at zero momentum transfer f+(0)
is the most critical hadronic quantity required for the de-
termination of |Vus| from K�3 decays via Eq. (9). By con-
struction, f+(0) is defined by the K0 → π− matrix ele-
ment of the vector current, Eq. (10), in the limit mu = md

and αem → 0, with kaon and pion masses kept at their
physical values.2 This hadronic quantity cannot be com-
puted in perturbative QCD, but is highly constrained by
SU(3) and chiral symmetry. In the chiral limit and, more
generally, in the SU(3) limit (mu = md = ms) the conser-
vation of the vector current implies f+(0) = 1. Expanding
around the chiral limit in powers of light quark masses one
can write

f+(0) = 1 + f2 + f4 + . . . (13)

where fn = O(mn
u,d,s/(4πfπ)n), and f2 and f4 are the

next-to-leading order (NLO) and next-to-next-to-leading
2 The choice of the K0 → π− form factor as the common

normalization is motivated by its smoothness in the mu = md

limit (see Sect. 2.2.3).
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Parameterization of Kℓ3 form factors
• Hadronic K→π matrix element is described by two form factors f+(t) and f0(t)         
   defined by:

• Experimental or theoretical inputs to define t-dependence of  f+,0(t).
• f−(t) term negligible for Ke3. 
 Taylor expansion:

 λ′ and λ′′ are strongly correlated: −95% for f+(t), and −99.96% for f0(t). 

 One parameter parameterizations:
 Pole parameterization 
   

 Dispersive approach plus Kπ scattering data for both  f+(t) and  f0(t)
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This term can be related to the π0-η mixing [61, 49] At

leading order (O(p2)) [44]

δK+π0

SU(2) =
3

4

1

R
, with R =

ms − m̂

md −mu
, (21)

while at NLO in the chiral expansion (O(p4)) [62]

δK+π0

SU(2) =
3

4

1

R

�
1 + χp4 + ∆M + O(m2

q)
�
, (22)

where χp4 ≈ 0.219 is an O(p4) correction calculable in

ChPT [44]. ∆M is a correction (starting at O(mq)) to the

ratio m2
K/m2

π:

m2
K

m2
π

=
1

2

�
1 +

ms

m̂

�
(1 + ∆M ) =

Q2

R
(1 + ∆M ) , (23)

where Q2 = (m2
s − m̂2)/(m2

d − m2
u). Using Eq. (23),

Eq. (22) can be rewritten

δK+π0

SU(2) =
3

4

1

Q2

�
m2

K

m2
π

+
χp4

2

�
1 +

ms

m̂

��
, (24)

which shows how δK+π0

SU(2) is essentially determined by the

double ratio Q2 (the dependence on ms/m̂ is suppressed

by the smallness of χp4). One can extract Q2 from the

analysis of the decay η → 3π or from the kaon mass split-

ting. A recent analysis using the latter method gives [49]

Q = 20.7 ± 1.2, (25)

and thus (using ms/m̂ = 24.7 ± 1.1 and including

O(e2p2, p2) corrections [61] to Eq. (24))

δK+π0

SU(2) = 0.029 ± 0.004. (26)

This is based on an evaluation of the low-energy electro-

magnetic couplings [59] leading to a large deviation of

Dashen’s limit [63]. Note that previous analyses of η → 3π
decays [64] give higher results for Q, and hence central val-

ues for δK+π0

SU(2) below the lower edge of the range of values

quoted in Eq. (26). New analyses of this decay based on

recent data [65] are in progress [66, 67] and should shed

light on this issue.

As a final note, the precision reached in the measure-

ment of the K�3 decay rates and in the determination of

the corrections δK�
EM allow δK+π0

SU(2) to be determined directly

from data, as discussed in Sect. 4.2. By means of Eqs. (22)

and (24), the empirical determination of δK+π0

SU(2) can then

be used to derive interesting constraints on the quark mass

ratios.

2.2.4 Parameterization of the form factors

The last ingredient for the determination of |Vus| from

Eq. (9) is the calculation of the phase-space integrals, IK�

IK� =

� tmax

m2
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dt
1

m8
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λ3/2
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m2
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×
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f̄2
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3m2
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2
Kπ
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f̄2
0 (t)

�
,

(27)

with ∆Kπ = m2
K −m2

π, λ = [t− (mK + mπ)2][t− (mK −
mπ)2], and tmax = (mK −mπ)2. In order to calculate the

integrals, knowledge is required of the normalized vector

and scalar form factors defined in Eq. (12). The form fac-

tors can be determined from fits to the measured distri-

butions of the K�3 decays in t or some equivalent variable

using a given parameterization for the form factors.

Among the different parameterizations proposed in the

literature, one can distinguish two classes [68]. Parameteri-

zations based on a systematic mathematical expansion are

to date the most widely used. In this class (Class II by the

nomenclature of Ref. 68), one finds the Taylor expansion

f̄Taylor
+,0 (t) = 1 + λ�

+,0
t

m2
π±

+
1

2
λ��

+,0

�
t

m2
π±

�2

+
1

6
λ���

+,0

�
t

m2
π±

�3

+ · · · ,

(28)

where λ�
+,0 and λ��

+,0 are the slope and the curvature of

the form factors, respectively. Another Class-II parame-

terization is the so-called z-parameterization of Ref. 69.

In Class-II parameterizations, the parameters describ-

ing the higher order terms of the form-factor expansion

are free to be determined from data. In practice, this addi-

tional freedom greatly complicates the use of such param-

eterizations. As noted in Ref. 70, if a quadratic parameter-

ization is used for both the vector and scalar terms, fits to

experimental data will provide no sensitivity to λ��
0 because

of the strong parameter correlations, especially between

λ�
0 and λ��

0 . For this reason, existing power-series fits use a

parameterization in λ�
+, λ��

+, and λ0 (see Eq. (28)). It has

been shown in Ref. 71 that in order to describe the form

factor shapes accurately in the physical region, one has to

go at least up to the second order in the Taylor expansion.

This is quantified in Ref. 70: if the same Kµ3 spectrum is

fitted using both the linear (λ0) and quadratic (λ�
0, λ��

0)

parameterizations, one typically finds λ0 ≈ λ�
0 + 3λ��

0 . Ig-

noring the quadratic term increases the phase space inte-

gral by about 0.15%. In addition, as discussed below and

in Sect. 3.5.3, for tests of low-energy dynamics involving

the Callan-Treiman theorem, f̄0(t) must be extrapolated

to t = ∆Kπ ≡ m2
K−m2

π, which is well above the endpoint

of the physical region in t for Kµ3 decays. A parameteriza-

tion that accounts for even higher-order terms is therefore

desirable.

The parameterizations belonging to Class I circumvent

these problems by incorporating additional physical con-

straints to reduce the number of independent parameters.

A typical example is the pole parameterization

f̄pole
+,0 (t) =

M2
V,S

M2
V,S − t

, (29)

where the dominance of a single resonance is assumed, and

the corresponding pole mass MV,S is the only free param-

eter. While for the vector form factor, a pole parameter-

ization with the dominance of the K∗(892) (MV ∼ 892

MeV) is in good agreement with the data, for the scalar

form factor, there is no such obvious dominance.
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decays, SEW = 1.0232(3) [43,8] is the short-distance elec-
troweak correction, CK is a Clebsch-Gordan coefficient
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The fK/fπ value from HPQCD/UKQCD [35] is

fK/fπ = 1.189(2)stat(7)syst. (7)

This result is in good agreement with the BMW and MILC
results. In particular, there is no apparent systematic dif-
ference between the results obtained using staggered and
clover fermions. This seems to suggest that possible issues
associated with the use of staggered fermions (in partic-
ular, the rooting issue [39–41]) are not relevant to the
determination of fK/fπ, at least at the present level of
accuracy.

In order to fully exploit the data set in Fig. 1, we aver-
age the results of the analyses from BMW, MILC ’09, and
HPQCD/UKQCD discussed above (Eqs. (5), (6), and (7)).
Since these results are consistent, we calculate the average
weighted by the statistical errors on the individual results.
This gives our reference central value and its statistical er-
ror. To obtain the total error on this average, we assume a
systematic error of 0.006, equal to the smallest systematic
error quoted among the three inputs. This is justified on
the basis of the agreement between the results. Adding the
statistical and systematic errors in quadrature, we obtain

fK/fπ = 1.193(6), (8)

which is quite consistent with all the results in Fig. 1, in-
cluding those obtained with staggered fermions and from
preliminary studies. In the above average, possible corre-
lations between the HPQCD/UKQCD and MILC results
due to the use of a common ensemble with a = 0.09 fm
has been neglected. However, since the valence quarks
are treated differently in these two studies, and the anal-
yses are completely different, any potential correlations
are diluted. The above average is consistent with both
the average from the most recent Lattice conference [6],
fK/fπ = 1.196(10) and the preliminary FLAG result [7],
fK/fπ = 1.190(10).

Updates from PACS-CS, RBC/UKQCD, and JLQCD,
in addition to new results (for example, an NF = 2+1+1
result from ETMC [42]), have already been announced
and will soon improve the present situation.

2.2 K�3 rates in the Standard Model

The K�3 decays provide ideal channels for the determi-
nation of |Vus|. The starting point of the analysis is the
expression for the photon-inclusive K → π�ν (K�3(γ)) de-
cay rate:

ΓK�3 =
G2

F m5
K
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KSEW

�
|Vus|f

K0π−

+ (0)
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IK�

×
�
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EM + δKπ
SU(2)

�2
,

(9)

where GF is the Fermi constant as determined from muon
decays, SEW = 1.0232(3) [43,8] is the short-distance elec-
troweak correction, CK is a Clebsch-Gordan coefficient
(1 for K0 and 1/

√
2 for K± decays), fK0π−

+ (0) is the

K0 → π− vector form factor at zero momentum trans-
fer, and IK� is a phase-space integral that is sensitive to
the momentum dependence of the form factors. The latter
describe the hadronic matrix elements

�π(pπ)|s̄γµu|K(pK)� =
(pπ + pK)µfKπ

+ (t) + (pK − pπ)µfKπ
− (t), (10)

where t = (pK − pπ)2 = (p� + pν)2. The vector form fac-
tor f+(t) represents the P-wave projection of the crossed
channel matrix element �0|s̄γµu|Kπ�. The scalar form fac-
tor f0(t) describes the S-wave projection, and in terms of
f+(t) and f−(t) reads

f0(t) = f+(t) +
t
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K −m2

π

f−(t). (11)

By construction, f0(0) = f+(0). Since f+(0) is not di-
rectly measurable, it is convenient to factor out fK0π−

+ (0)
in Eq. (9) and then normalize the form factors for all chan-
nels to fK0π−

+ (0), denoted simply as f+(0) in the following.
The normalized form factors are then defined as

f̄+(t) =
f+(t)
f+(0)

, f̄0(t) =
f0(t)
f+(0)

, f̄+(0) = f̄0(0) = 1. (12)

Finally, δK�
EM represents the channel-dependent long-distance

EM corrections (Sect. 2.2.2) and δKπ
SU(2) the correction for

isospin breaking (Sect. 2.2.3).
To extract |Vus| from K�3 decays using Eq. (9), one

must measure one or more photon-inclusive K�3 decay
rates, compute the phase space integrals from form-factor
measurements, and make use of theoretical results for f+(0),
δK�
EM, and δKπ

SU(2). We discuss the evaluation of these differ-
ent ingredients in the following.

2.2.1 Theoretical determination of f+(0)

The vector form factor at zero momentum transfer f+(0)
is the most critical hadronic quantity required for the de-
termination of |Vus| from K�3 decays via Eq. (9). By con-
struction, f+(0) is defined by the K0 → π− matrix ele-
ment of the vector current, Eq. (10), in the limit mu = md

and αem → 0, with kaon and pion masses kept at their
physical values.2 This hadronic quantity cannot be com-
puted in perturbative QCD, but is highly constrained by
SU(3) and chiral symmetry. In the chiral limit and, more
generally, in the SU(3) limit (mu = md = ms) the conser-
vation of the vector current implies f+(0) = 1. Expanding
around the chiral limit in powers of light quark masses one
can write

f+(0) = 1 + f2 + f4 + . . . (13)

where fn = O(mn
u,d,s/(4πfπ)n), and f2 and f4 are the

next-to-leading order (NLO) and next-to-next-to-leading
2 The choice of the K0 → π− form factor as the common

normalization is motivated by its smoothness in the mu = md

limit (see Sect. 2.2.3).
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The most interesting and well-motivated parameteri-
zations of Class I are those based on dispersion relations.
These are based on the observation that the vector and
scalar form factors are analytic functions in the complex
t-plane, except for a cut along the positive real axis for
t ≥ tlim ≡ (mK + mπ)2, where they develop discontinu-
ities. One can therefore write

f̄+,0(t) =
1
π

� ∞

tlim

ds
� Im f̄+,0(s�)
(s� − t− i�)

+ subtractions, (30)

where the imaginary part, Im f̄+,0(s�), can be determined
from data on Kπ scattering, and the ultraviolet compo-
nent of the integral is absorbed into the (polynomial) sub-
traction terms. In the vector case, the dispersion parame-
terization turns out to be numerically very similar to the
pole parameterization due to dominant contribution to
Im f̄+(s�) from the K

∗(892). On the other hand, the dis-
persive parameterization is particularly useful in the scalar
case, where there is no dominant one-particle intermediate
state.

In addition to the analyticity constraints, the scalar
form factor must satisfy an additional theoretical con-
straint dictated by chiral symmetry. The Callan-Treiman
(CT) theorem [72] implies that the scalar form factor at
t = ∆Kπ ≡ m

2
K − m

2
π is determined in terms of fK/fπ

and f+(0) up to O(mu,d) corrections:

C ≡ f̄0(∆Kπ) =
fK

fπ

1
f+(0)

+ ∆CT . (31)

The quantity ∆CT = O(mu,d/4πfπ) can be evaluated in
ChPT. At NLO in the isospin limit [44],

∆CT = (−3.5± 8)× 10−3
, (32)

where the error is a conservative estimate of the higher-
order corrections [73]. Results consistent with Eq. (32)
from NNLO estimates beyond the isospin limit have been
presented in Ref. 49, 74. As discussed in Sect. 3.5.3, the
relation Eq. (31) provides a useful test of the consistency of
the lattice results for fK/fπ and f+(0) with experimental
data on the scalar form factors.

2.2.5 Dispersive parameterization for the form factors

Motivated by the existence of the CT theorem, a particu-
larly appealing dispersive parameterization for the scalar
form factor has been proposed [71]. Two subtractions are
performed, one at t = 0, where by definition f̄0(0) = 1,
and the other at the CT point, t = ∆Kπ. Assuming that
the scalar form factor has no zeroes, this leads to

f̄
disp
0 (t) = exp

�
t

∆Kπ
(ln C −G(t))

�
, (33)

with

G(t) =
∆Kπ(∆Kπ − t)

π

×
� ∞

tlim

ds

s

φ0(s)
(s−∆Kπ)(s− t− i�)

.

(34)

With this parameterization, the only free parameter to be
determined from data is C.

The phase φ0(s) can be identified in the elastic region
with the S-wave (Kπ)I=1/2 scattering phase: performing
two subtractions minimizes the contributions from the un-
known high-energy phase, which in [71] is simply and con-
servatively assumed to lie within the interval [0, 2π). The
resulting function G(t) in Eq. (34) does not exceed 20%
of the expected value of lnC, while the theoretical uncer-
tainties are at most 10% of the value of G(t) [71]. The
expressions for the leading slope parameters in the Taylor
expansion as functions of lnC are [75]

λ�0 =
m

2
π

∆Kπ
[ln C −G(0)] , (35a)

λ��0 = (λ�0)
2 − 2

m
4
π

∆Kπ
G
�(0), (35b)

λ���0 = (λ�0)
3 − 6

m
4
π

∆Kπ
G
�(0)λ�0 − 3

m
6
π

∆Kπ
G
��(0), (35c)

where

G(0) = 0.0398(44), (36a)

−2
m

4
π

∆Kπ
G
�(0) = 4.16(56)× 10−4

, (36b)

−3
m

6
π

∆Kπ
G
��(0) = 2.72(21)× 10−5

. (36c)

A dispersive representation for the vector form factor
can be been built in a similar way [75]. Since there is
no equivalent of the CT theorem in this case, the two
subtractions are both performed at t = 0. The expression
analogous to Eq. (33) for the vector form factor is

f̄
disp
+ (t) = exp

�
t

m2
π

(Λ+ + H(t))
�

, (37)

with
H(t) =

m
2
πt

π

� ∞

tlim

ds

s2

φ+(s)
(s− t− i�)

. (38)

Here the fit parameter is Λ+ ≡ m
2
π df̄+(t)/dt|t=0 and the

phase φ+(s) is derived from P-wave (Kπ)I=1/2 elastic
scattering. As in the case of the scalar form factor, the
uncertainty on H(t) has a small influence on the determi-
nation of Λ+. The expressions for the leading slopes in the
Taylor expansion as functions of Λ+ are [75].

λ�+ = Λ+, (39a)
λ��+ = (λ�+)2 + 2m

2
πH

�(0), (39b)
λ���+ = (λ�+)3 + 6m

2
πH

�(0)λ�+ + 3m
4
πH

��(0), (39c)

where

2m
2
π H

�(0) = 5.79(97)× 10−4
, (40a)

3m
4
π H

��(0) = 2.99(21)× 10−5
. (40b)

The principal results presented in the following sec-
tions are based on the dispersive parameterizations of Eqs. (33)
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Vector form factor from Ke3

Quadratic expansion: 
• Measurements from ISTRA+, KLOE, KTeV, NA48 with KLe3 and K−e3 decays.
• Good fit quality: χ2/ndf=5.3/6(51%) for all data; χ2/ndf=4.7/4(32%) for KL only
• The significance of the quadratic term is 4.2σ from all data and 3.5σ from KL only.
• Using all data or KL only changes the space phase integrals I0

e3 and I±
e3 by 0.06% .

• Errors on Ie3 are significantly smaller when K− data are included.

λʹ′ = (mπ+/MV)2; λʹ′ʹ′ = 2λʹ′2

Improvements: dispersive parameterization for f+(t), with good analytical and unitarity 
properties and a correct threshold behavior, 
(e.g. Bernard, Oertel, Passemar, Stern Phys. Rev. Lett. D80 (2009) 034034)

• All four experiments quote value for MV for pole fit to Ke3 data. 
   The average value is Mv =871±5 MeV (χ2/ndf=3.8/3)
• The values for λ+′ and λ+′′ from pole expansion are in agreement with quadratic                                                                                                                                                                                                  
   fit results.
• Using quadratic averages or pole fit results changes I0

e3 by 0.11% .

A pole parameterization is in good agreement with present data:
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Vector and scalar form factor from Kµ3

•  Because of correlation, is not possible measure λ0′′ at any plausible level of stat.
•  Neglecting a quadratic term in the param. of scalar FF implies: λ0′→λ0′+3.5λ0′′

1σ contour 
for all the 
experimental 
results.

• λ+′, λ+′′ and λ0 measured for Kµ3 from ISTRA+, KLOE, KTeV, and NA48.
• NA48 results are difficult to accomodate in the [λ+′, λ+′′, λ0] space.
• Fit probability varies from 3×10−7 (with NA48) to 14.5% (without NA48).

Fit
with NA48

Fit
without
 NA48
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Vector and scalar form factor from Kµ3

The dispersive form factor parameterization clearly illustrate the contrast between  
K

µ3
 result from NA48 and those from the other experiment

Fit
without NA48

Fit probability varies from 0.026% 
(χ2/ndf=25.7/6) with NA48 
to 34.4% without NA48 χ2/ndf=5.6/5.

The blue dashed ellipse is a 
new preliminary result 
from KLOE, not included 
in the fit.

1σ contour 
for all the 
experimental 
results.
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Vector and scalar form factor from Kℓ3

The intergals, when evaluated from the dispersive fit results, tend to be slightly 
greater (no more than 0.2%) than from the the quadratic fit results. 

•Comparison of phase-space integrals evaluated from our averages of results of 
quadratic-linear and dispersive fits
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Fig. 7. 1σ confidence contours for measurements of Λ+ and

ln C from KLOE, KTeV, NA48, and ISTRA+. For each ex-

periment, the results for Ke3 and Kµ3 decays are averaged.

Our average of the results from all four experiments, excluding

the Kµ3 data from NA48, is also shown. A new, preliminary

KLOE result [136] is shown as the dashed blue ellipse. This is

not included in the fit.

Integral λ�
+, λ��

+, λ0 Λ+, ln C Rel. diff.

I(K0
e3) 0.15457(20) 0.15476(18) +0.12%

I(K±
e3) 0.15894(21) 0.15922(18) +0.18%

I(K0
µ3) 0.10266(20) 0.10253(16) −0.13%

I(K±
µ3) 0.10564(20) 0.10559(17) −0.05%

ρ(Ke3, Kµ3) +0.56 +0.38

Table 12. Comparison of phase-space integrals evaluated from

our averages of the results of quadratic-linear (λ�
+, λ��

+, λ0) and

dispersive (Λ+, ln C) fits.

Table 12 lists the values of the phase-space integrals as

computed from the results of our averages of the exper-

imental form-factor data using the quadratic-linear and

dispersive parameterizations. (In the case of the disper-

sive parameterization, the uncertainties arising from the

representation of the form-factor phase are included in the

overall uncertainty for each integral.) For both parameter-

izations, the correlations between the uncertainties on the

integrals are described by a matrix of the form





1 1 ρ ρ
1 1 ρ ρ
ρ ρ 1 1

ρ ρ 1 1



 .

The table lists the values of the correlation coefficient ρ
for each parameterization.

As seen in the table, when evaluated from the disper-

sive fit results, the integrals tend to be very slightly dif-

ferent than they are when evaluated from the quadratic-

linear fit results. Nowhere is this difference greater than

0.2%. As expected, the Kµ3 integrals are slightly smaller

when obtained from the dispersive fit results (Sect. 2.2.4).

Given the advantages of the dispersive parameterization,

f+(0)
0.95 1 1.05

ISTRA+ 0.966(16)

NA48 1.039(17)

KTeV 0.982(15)

KLOE 0.970(25)

RBC/UKQCD
0.959(5)

Fig. 8. Values for f+(0) from measurements of ln C from

different experiments, using the Callan-Treiman relation and

fK/fπ = 1.193(6). The UKQCD/RBC result f+(0) = 0.959(5)
is also shown.

we use the integrals calculated from the dispersive fit re-

sults for the evaluation of |Vus| and related tests.

3.5.3 The Kµ3 scalar form factor and tests of chiral
perturbation theory

Given a value for fK/fπ, the Callan-Treiman relation

(Eq. (31)) can be used to obtain a value for f+(0) from

a measurement of ln C, providing a test of consistency

between scalar form-factor measurements and lattice cal-

culations. Figure 8 shows the values for f+(0) correspond-

ing to the measurements of ln C from different experi-

ments, using the Callan-Treiman relation and fK/fπ =

1.193(6) (Sect. 2.1.1). For this exercise, the uncertainties

on each value of lnC include the common contribution

from the parameterization of the form-factor phase. The

lattice value from RBC/UKQCD, f+(0) = 0.959(5) [56],

is also shown. The measurements of ln C from KLOE,

KTeV, and ISTRA+ give values for f+(0) that are es-

sentially consistent with the lattice estimate, although

they tend to be a little larger. The NA48 result, on the

other hand, gives f+(0) = 1.039(17), which is in contrast

with the theoretical expectation of Fubini and Furlan that

f+(0) < 1 [137]. As noted in Sect. 3.5.2, we exclude the

NA48 Kµ3 form-factor measurements from the averages

used to calculate the phase-space integrals for the evalua-

tion of |Vus| and related tests. Our resulting world-average

values for Λ+ and lnC are listed in Table 11. The value

lnC = 0.2004(91), when used with fK/fπ = 1.193(6),

gives f+(0) = 0.974(12). More generally, the experimental

data on ln C alone give (fK/fπ)/f+(0) = 1.225(14). This

result is completely independent of any information from

lattice estimates.

Alternatively, one can perform a fit to the world-average

value of lnC, together with the lattice determinations

fK/fπ = 1.193(6) and f+(0) = 0.959(5), using the con-

straint given by the Callan-Treiman relation. When per-

forming such a fit, we make use of a recent preliminary

measurement from KLOE [136] of the dispersive Kµ3 form-

factor parameters. This measurement, which is illustrated
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Global fits and averages:
• KL, KS, and K±, dominant BRs and lifetime.
• Parameterization of the K→π interaction (form factor)
 
Physics results:
• |Vus|× f+(0)
• |Vus|/|Vud| × fK/fπ.
• Theoretical estimations of f+(0) and fK/fπ.
• Vus and Vud determinations.
• Bounds on helicity suppressed amplitudes.
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Γ(Kl3(γ)) =
CK

2 GF
2MK

5

192π3 SEW |Vus|2 | f+      (0)|2 IKℓ(λ+,0) (1+δK
SU(2)+δKℓ

em)2

with  K = K+, K0; ℓ = e, µ    and    CK
2 = 1/2 for K+, 1 for K0

K0π−

Inputs from experiment:

Γ(Kl3(γ))  

IKℓ(λ)

Branching ratios 
properly inclusive of 
radiative effects; 
lifetimes

Phase space integral: λ’s  
parameterize form factor 
dependence on t : 
Ke3: only λ+

Kµ3 : need  λ+  and λ0

Inputs from theory:

SEW
Universal short distance  
EW correction (1.0232)

δK
SU(2)

δKℓ
em

Form factor correction for 
strong SU(2) breaking 

Long distance EM 
effects 

Determination of |Vus|×f+(0)

 f+      (0)K0π− Form factor at zero 
momentum transfer (t=0) Callan-Treiman
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(values used to extract |Vus|f+(0))

SU(2) and em corrections

δΚSU(2)(%) δKℓ
em(%)

K0e3 0 +0.495(110)

K0µ3 0 +0.700(110)

K+e3 +2.9(4) +0.050(125)

K+µ3 +2.9(4) +0.008(125)

• δem for full phase space: all measurements assumed fully inclusive.
• Different estimates of δem  agree within the quoted errors.
• Available correlation matrix between different corrections for δem.
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0.94 0.95 0.96 0.97 0.98 0.99 1.00

Nf=2

Nf=2+1
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QCDSF*
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Clover
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Fig. 2. Present determinations of f+(0) ≡ fK0π−
+ (0) from analytical or semi-analytical approaches [45–48] and lattice QCD

[50–56]. Unpublished results are indicated by asterisks.

Mode δK�
EM (%)

K0
e3 0.495 ± 0.110

K±
e3 0.050 ± 0.125

K0
µ3 0.700 ± 0.110

K±
µ3 0.008 ± 0.125

Table 1. Electromagnetic corrections to the fully-inclusive
K�3(γ) rate [58].

in Eq. (9)) are listed in Table 1. These values were ob-

tained to leading nontrivial order in chiral effective theory,

working with a fully-inclusive prescription of real photon

emission. For the low-energy electromagnetic couplings

appearing in the structure-dependent contributions, the

recent determinations of Refs. 59 and 60 were used. The

errors in Table 1 are estimates of higher-order contribu-

tions that are only partially known. The associated corre-

lation matrix was found to be [58]





+1.000 +0.081 +0.685 −0.147

+1.000 −0.147 +0.764

+1.000 +0.081

+1.000



 . (18)

It is also useful to list the uncertainties on the linear com-

binations of δK�
EM that are relevant for lepton-universality

and strong isospin-breaking tests (as in Sects. 4.2 and 4.3):

δK0e
EM − δK0µ

EM = (−0.205± 0.085)%, (19a)

δK±e
EM − δK±µ

EM = (0.042± 0.085)%, (19b)

δK±e
EM − δK0e

EM = (−0.445± 0.160)%, (19c)

δK±µ
EM − δK0µ

EM = (−0.692± 0.160)%. (19d)

The corresponding electromagnetic corrections to the

Dalitz plot densities can be found in Ref. 58. It is im-

portant to note that the corrections to the Dalitz distri-

butions can be locally large (up to ∼ 10%), with con-

siderable cancellations in the integrated electromagnetic

corrections. Hence a proper implementation of the electro-

magnetic corrections in the analysis of the experimental

data is essential, in particular for a reliable extraction of

the form-factor parameters.

2.2.3 Isospin-breaking corrections in K�3 decays

In Eq. (9), the same quantity f+(0) ≡ fK0π−
+ (0) (form

factor at zero momentum transfer) is factored out for all

decay channels. The isospin-breaking corrections are then

included via the term containing δKπ
SU(2), where

δK0π−

SU(2) = 0, δK+π0

SU(2) =
fK+π0

+ (0)

fK0π−
+ (0)

− 1. (20)
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Average: |Vus| f+(0) = 0.2163(5)      χ2/ndf = 0.77/4 (94%)

% err
×10-2 BR×10-2 τ×10-2 Δ×10-2 IKℓ×10-2

 KLe3 0.2163(6) 26 9 20 11 6

KLµ3 0.2166(6) 29 15 18 11 8

 KSe3 0.2155(13) 61 60 3 11 6

 K±e3 0.2160(11) 52 31 8 40 6

 K±µ3 0.2158(14) 63 47 8 39 8

Determination of |Vus|×f+(0)

Γ(Kl3(γ)) =
CK

2 GF
2MK

5

192π3 SEW |Vus|2 | f+      (0)|2 IKℓ(λ+,0) (1+δK
SU(2)+δKℓ

em)2
K0π−
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Γ(Kl3(γ)) =
CK

2 GF
2MK

5

192π3 SEW |Vus|2 | f+      (0)|2 IKℓ(λ+,0) (1+δK
SU(2)+δKℓ

em)2
K0π−

Theoretical estimate of f+(0)

Leutwyler & Roos estimate 
still widely used:
 f+(0) = 0.961(8).

Lattice evaluations generally 
agree well with this value; 
use RBC-UKQCD10 value:
 f+(0) = 0.959(5) (0.5% 
accuracy, total err.).

 Kl3: |Vus| f+(0) = 0.2163(5) and f+(0) = 0.959(5), obtain |Vus| = 0.2254(13)
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 =

Inputs from experiment:
Γ(π,Kl2(γ))                   BR properly 
inclusive of radiative 
effects; lifetimes
Inputs from theory:
CK,π Rad. inclusive EW corr.

Vus/Vud determination from BR(Kµ2)

 fK/fπ

Γ(Kµ2(γ))
Γ(πµ2(γ))

 ×  ×  × (1+α(CK-Cπ)) 
 fK
 fπ

|Vus|2

|Vud|2
MK(1-mµ

2/MK
2)2 

mπ(1-mµ
2/mπ

2)2 

           Not protected by the 
Ademollo-Gatto theorem: only lattice.
• Lattice calculation of fK/fπ  
  and radiative corrections 
  benefit of cancellations.
• Use average of HPQCD-UKQCD07,
   BMW, and MILC’09:fK/fπ = 1.193(6).

Kl2: |Vus|/|Vud| fK/fπ = 0.2758(5) and fK/fπ = 1.193(6), obtain |Vus|/|Vud|=0.2312(13) 
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Vud, Vus and Vus/Vud

Fit (no CKM unitarity constraint):
 Vud = 0.97425(22); Vus = 0.2253(9)

χ2/ndf = 0.014/1 (91%)

 Fit (with CKM unitarity constraint):  Vus = 0.2254(6) χ2/ndf = 0.024/2 (99%)

|Vus| = 0.2254(13),  |Vus|/|Vud|=0.2312(13)  Vud = 0.97425(22) 

• |Vud|2−|Vus|2 -|Vub|2 - 1 = -0.0001(6) 

• The test on the unitarity of CKM can be 
also interpreted as a test of the universality 
of lepton and quark gauge coupling:
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Fig. 11. Regions in the (mH± , tan β) plane in two-Higgs-

doublet models excluded by the present result for Rµ23.

GCKM = Gµ

�
|Vud|2 + |Vus|2 + |Vub|2. We obtain

GCKM = 1.16633(35)× 10−5 GeV−2
, (58)

with Gµ = 1.166371(6)× 10−5 GeV−2 [3].
It is also possible to perform the fit with the unitar-

ity constraint included, increasing by one the number of
degrees of freedom. The constrained fit gives

|Vus| = sin θC = λ = 0.2254(6) [with unitarity] (59)

and χ2/ndf = 0.024/2 (P = 99%). This result and that
obtained above without assuming unitarity are both illus-
trated in Fig. 10.

At this point, using Eq. (47) and the phenomenological
value ∆CKM = −0.0001(6), it is possible to set bounds on
the effective scale of the four operators that parameterize
new physics contributions to ∆CKM. We obtain

Λ > 11 TeV (90% C.L.). (60)

As noted in Ref. 76, for the operators O
(3)
ll

, O
(3)
ϕl

, and
O

(3)
ϕq (see Eqs. (46)), this constraint is at the same level

as the constraints from Z-pole measurements. For the
four-fermion operator O

(3)
lq

, ∆CKM improves upon exist-
ing bounds from LEP2 by an order of magnitude.

4.6 Bounds on non-helicity-suppressed amplitudes

As noted in Sect. 2.3.3, an empirical value for the ratio
Rµ23 (Eq. (50)) can be used to exclude regions of the
(mH± , tan β) parameter space in models with two Higgs
doublets, such as the minimal supersymmetry extension
of the SM (Eq. (51)). Operatively, we evaluate Rµ23 via
a fit akin to that described in Sect. 4.5, but with sepa-
rate parameters accounting for the values of |Vus| from
K�3 and Kµ2 decays. The fit then has three free param-
eters: the value of |Vus| from K�3 decays, the value of

1.18

1.2

1.22

0.94 0.96 0.98

f+(0)

f K
/f !

1.18

1.2

1.22

0.94 0.96 0.98

Fig. 12. Results of fit for f+(0) and fK/fπ, given experimen-

tal data and first-row CKM unitarity: (yellow) no input from

lattice; (blue) f+(0) = 0.959(5) as input to the fit and no input

for fK/fπ; (red) fK/fπ = 1.193(6) as input and no input for

f+(0). The grey bands illustrate the reference values for f+(0)

and fK/fπ.

|Vus/Vud| from Kµ2 decays, and the value of |Vud| from
0+ → 0+ nuclear beta decays. The input values used for
|Vus| and |Vus/Vud| are from Eq. (56) and include the rel-
evant lattice constants. The contribution to non-helicity-
suppressed K�3 decays from charged Higgs exchange is
negligible, so we include as a constraint in the fit the first-
row unitarity condition on the value of |Vus| from K�3

decays: |Vud|2 + |Vus|2
K�3

+ |Vub|2 = 1. Expressing the re-
sults of the fit in terms of |Vus| from K�3 decays and the
ratio Rµ23, we obtain

|Vus| = 0.2254(8) [K�3, 0+ → 0+
, unitarity],

Rµ23 = 0.999(7) [Kµ2].
(61)

The fit gives χ2/ndf = 0.0003/1 (P = 99%), with ρ =
−0.55 between the parameter uncertainties in the stated
basis. The regions of the (mH± , tan β) parameter space in
models with two Higgs doublets excluded at the 1σ and
95% CLs by this result for Rµ23 are shown as the shaded
area in Fig. 11. The bound is obtained setting �0 = 1/16π2

in Eq. (51), as expected in the MSSM. Note that this result
excludes the region at low mH± and large tanβ favoured
by B → τν [143].

4.7 Determination of Standard Model values for
f+(0) and fK/fπ from experimental data

Equation (2), which in the Standard Model relates the
ratio of K�2 and π�2 decay rates to the ratio |Vus/Vud| ×
fK/fπ, can be rewritten

Q�2 =
(|Vus|f+(0))2

|Vud|2 × 1
f+(0)2

× f2
K

f2
π

, (62)

FlaviaNet Kaon Working Group: Evaluation of |Vus| and Standard Model tests from kaon data 21

20

40

60

80

200 400
mH+ (GeV)

ta
n 
!

Excluded by Rµ23

67.28% CL
95% CL

20

40

60

80

200 400

Fig. 11. Regions in the (mH± , tan β) plane in two-Higgs-

doublet models excluded by the present result for Rµ23.

GCKM = Gµ

�
|Vud|2 + |Vus|2 + |Vub|2. We obtain

GCKM = 1.16633(35)× 10−5 GeV−2
, (58)

with Gµ = 1.166371(6)× 10−5 GeV−2 [3].
It is also possible to perform the fit with the unitar-

ity constraint included, increasing by one the number of
degrees of freedom. The constrained fit gives

|Vus| = sin θC = λ = 0.2254(6) [with unitarity] (59)

and χ2/ndf = 0.024/2 (P = 99%). This result and that
obtained above without assuming unitarity are both illus-
trated in Fig. 10.

At this point, using Eq. (47) and the phenomenological
value ∆CKM = −0.0001(6), it is possible to set bounds on
the effective scale of the four operators that parameterize
new physics contributions to ∆CKM. We obtain

Λ > 11 TeV (90% C.L.). (60)

As noted in Ref. 76, for the operators O
(3)
ll

, O
(3)
ϕl

, and
O

(3)
ϕq (see Eqs. (46)), this constraint is at the same level

as the constraints from Z-pole measurements. For the
four-fermion operator O

(3)
lq

, ∆CKM improves upon exist-
ing bounds from LEP2 by an order of magnitude.

4.6 Bounds on non-helicity-suppressed amplitudes

As noted in Sect. 2.3.3, an empirical value for the ratio
Rµ23 (Eq. (50)) can be used to exclude regions of the
(mH± , tan β) parameter space in models with two Higgs
doublets, such as the minimal supersymmetry extension
of the SM (Eq. (51)). Operatively, we evaluate Rµ23 via
a fit akin to that described in Sect. 4.5, but with sepa-
rate parameters accounting for the values of |Vus| from
K�3 and Kµ2 decays. The fit then has three free param-
eters: the value of |Vus| from K�3 decays, the value of
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for fK/fπ; (red) fK/fπ = 1.193(6) as input and no input for
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|Vus/Vud| from Kµ2 decays, and the value of |Vud| from
0+ → 0+ nuclear beta decays. The input values used for
|Vus| and |Vus/Vud| are from Eq. (56) and include the rel-
evant lattice constants. The contribution to non-helicity-
suppressed K�3 decays from charged Higgs exchange is
negligible, so we include as a constraint in the fit the first-
row unitarity condition on the value of |Vus| from K�3

decays: |Vud|2 + |Vus|2
K�3

+ |Vub|2 = 1. Expressing the re-
sults of the fit in terms of |Vus| from K�3 decays and the
ratio Rµ23, we obtain

|Vus| = 0.2254(8) [K�3, 0+ → 0+
, unitarity],

Rµ23 = 0.999(7) [Kµ2].
(61)

The fit gives χ2/ndf = 0.0003/1 (P = 99%), with ρ =
−0.55 between the parameter uncertainties in the stated
basis. The regions of the (mH± , tan β) parameter space in
models with two Higgs doublets excluded at the 1σ and
95% CLs by this result for Rµ23 are shown as the shaded
area in Fig. 11. The bound is obtained setting �0 = 1/16π2

in Eq. (51), as expected in the MSSM. Note that this result
excludes the region at low mH± and large tanβ favoured
by B → τν [143].

4.7 Determination of Standard Model values for
f+(0) and fK/fπ from experimental data

Equation (2), which in the Standard Model relates the
ratio of K�2 and π�2 decay rates to the ratio |Vus/Vud| ×
fK/fπ, can be rewritten

Q�2 =
(|Vus|f+(0))2

|Vud|2 × 1
f+(0)2

× f2
K

f2
π

, (62)
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Kµ2: sensitivity to NP 

Comparison of Vus from Kℓ2 (helicity suppressed) and from Kℓ3 (helicity allowed)
To reduce theoretical uncertainties study the quantity:

Within SM Rℓ23 = 1; NP effects can show as scalar currents due to a charged Higgs:
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in terms of the V phenom
ij

determined from semileptonic

transitions using the standard procedure. The new-physics

contributions to ∆CKM involve four weak-scale gauge-

invariant local operators (ϕ denotes the SM Higgs dou-

blet),

O(3)
ll

=
1

2
(LLγµσaLL)(LLγµσaLL), (46a)

O(3)
lq

= (LLγµσaLL)(Q
L
γµσaQL), (46b)

O(3)
ϕl

= i(ϕ†Dµσaϕ)(LLγµσaLL) +h.c., (46c)

O(3)
ϕq

= i(ϕ†Dµσaϕ)(Q
L
γµσaQL) +h.c., (46d)

describing contact four-fermion interactions and gauge

boson-fermion vertex corrections. Defining α̂(3)
i

= ηiv2/Λ2
i

(with ηi = ±1), one has

∆CKM = 4

�
α̂(3)

ll
− α̂(3)

lq
− α̂(3)

ϕl
+ α̂(3)

ϕq

�
. (47)

In specific SM extensions, the α̂i are functions of the un-

derlying parameters. Therefore, via the above relation one

can obtain the constraints from quark-lepton universality

tests on any weakly-coupled SM extension.

Each of the α̂ coefficients also contributes to other low-

and high-energy precision electroweak observables [82].

Therefore, we can now address in a model-independent

way concrete questions such as the following:

– What is the maximal deviation |∆CKM| allowed once

all the precision electroweak constraints have been

taken into account?

– Which observables provide the strongest constraints

on the operators contributing to ∆CKM?

In order to quantify the significance of the experimental

constraints on CKM unitarity, we first calculate the range

of ∆CKM(α̂i) allowed by existing bounds from all precision

electroweak measurements [76]. In terms of the best-fit

values and the covariance matrix of the α̂i [82] obtained

from the fit to electroweak precision data, at 90% C.L. one

has

−9.5× 10
−3 ≤ ∆CKM ≤ 0.1× 10

−3. (48)

This result implies that a deviation from CKM unitarity at

the level of −1% is not ruled out by precision electroweak

tests. A closer scrutiny of the precision data shows that

the blame for large deviations of ∆CKM from zero could

be attributed almost entirely to the operator O(3)
lq

, which

is constrained relatively poorly from LEP2 hadronic cross

section data, while the other three operators are severely

constrained: O(3)
ll

by the Fermi constant, O(3)
ϕq by hadronic

Z decays, and O(3)
ϕl

by leptonic Z decays.

The above discussion implies that even a percent-level

test of CKM unitarity would provide information not avail-

able from other precision tests at low and high energies.

Indeed, by Eq. (47), a test of CKM unitarity to better than

one part in 10
3

(e.g., with a 0.5% determination of |Vus|

from K decays, combined with the 0.02% determination of

|Vud| from nuclear beta decays) would probe new-physics

effective scales Λ on the order of 10 TeV. As we will show

in Sect. 4, the current theoretical and experimental pre-

cision in the determination of |Vus| allow this prospect to

be realized.

2.3.3 Beyond U(3)
5

Corrections to the U(3)
5

limit can be introduced both

within MFV and via generic flavor structures. In charged-

current processes, the main effect of U(3)
5

breaking is to

turn on the chirality flipping (pseudo)scalar and tensor

structures in Eq. (41). In MFV, the coefficients parame-

terizing deviations from U(3)
5

are highly suppressed (the

chirality flip is associated with insertions of Yukawa ma-

trices). However, such suppression can be compensated

by a corresponding tanβ enhancement in models with

two Higgs doublets of Type II, such as the Higgs sec-

tor of the minimal supersymmetric extension of the SM

(MSSM).
5

In this case, the leading non-standard contri-

bution involves charged Higgs exchange. To one loop, this

generates the coefficient

[sR]us = − tan
2 β

(1 + �0 tan β)

m�ms

m2
H+

, (49)

where �0 is a correction factor which is negligible in the

non-supersymmetric case, while it is O(1/16π2
) in the

MSSM [83] (see also [84, 85]). In K�2 decay, the H±
-

exchange amplitude destructively interferes with the SM

W±
amplitude; for large values of tanβ (∼ 50) and low

values of mH± (∼100 GeV), the K�2 rate can be decreased

by as much as 5%.

A highly sensitive probe of U(3)
5

violating structures

is therefore provided by comparing the value of |Vus| de-

termined using Kµ2 decays, which are helicity suppressed,

and K�3 decays, which are helicity allowed.
6

In practice, to

minimize the impact of the uncertainties from fK and the

electromagnetic corrections for Kµ2, it is more convenient

to consider the ratio

Rµ23 =

�
fK/fπ

f+(0)

�−1�����
Vus

Vud

����
fK

fπ

�

µ2

|Vud|0+→0+

[|Vus|f+(0)]�3
, (50)

which makes explicit contact with the results of Sects. 4.1

and 4.4. The hadronic uncertainties enter through the

combination (fK/fπ)/f+(0) and could be reduced if this

quantity were to be directly computed on the lattice.

Within the SM Rµ23 = R�23 = 1, while the inclusion of

Higgs-mediated scalar currents leads to

Rµ23 ≈
���� 1 −

m2
K+

m2
H+

tan
2 β

1 + �0 tan β

���� . (51)

5
In such models, tan β = v2/v1 is the ratio of the two Higgs

vacuum expectation values.
6

In principle, the charged-Higgs exchange amplitude affects

Ke3 and Kµ3 decays differently. For Ke3, the effect is totally

negligible, while for Kµ3, it is substantially smaller than for

Kµ2, but not totally negligible. However, this effect is well be-

low the present theoretical and experimental errors.
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Kµ2: sensitivity to NP! 

Rℓ23 is accessible via BR(Kµ2)/BR(πµ2), Vusf+(0), 
and Vud, and fK/fπ/f+(0) determinations.

• Using K± fit results, assuming unitarity for    
   Vus(Kℓ3) and using fK/fπ/f+(0) from lattice: 
                    Rℓ23= 0.999(7)

• Uncertainty dominated by fK/fπ/f+(0).
• 95% CL excluded region (with ε0∼0.01).
• In tanβ-MH± plane, Rµ23 fully cover the 
   region uncovered by BR(B→τν).
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Conclusions

• Dominant KS, KL, and K± BRs, and lifetime known with very good accuracy.
• Dispersive approach for form factors.
• Constant improvements from lattice calculations of f+(0) and fK/fπ:
   

• |Vus| f+(0) at 0.2% level.
• |Vus| measured with 0.6% accuracy (with f+(0)= 0.959(5))
     Dominant contribution to uncertainty on |Vus| still from f+(0).
     CKM unitarity test satisfied at 0.17σ level
  

• Comparing |Vus| values from Kµ2 and Kl3, exclude large region in the 
  (mH+-,tanβ) plane, complementary to results from B→τν decays.
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Drift chamber:
• gas: 90% He-10% iC4H10

•  δpT/pT = 0.4%
• σxy≈150 µm ; σz≈2 mm
• σvertex ≈1 mm

Calorimeter  (Pb-Sci.Fi.):
• σΕ/E = 5.7% / √(E(GeV))
• σt = 55 ps/√(E(GeV))⊕100 ps 
• 98% of 4π

Magnetic field: 0.52 T

QCAL vetos: (Pb-scintillator)

28

KLOE-2 experiment
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KLOE-2 experiment
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Minimal detector upgrade
• Tagger for γγ physics: to detect 
         off-momentum e±  from
  
─ Low Energy Tagger  (130-230 MeV) 

      calorimeters, LYSO + SiPM 
─ High Energy Tagger  (E > 400 MeV)

      position sensitive detectors
      (strong energy-position correlation
        ⇒ use the DAΦNE magnets as e± 
        spectrometer)

• No QCAL on quadrupoles (Pb shields)

• Luminosity  goal: 5 fb-1 @ √s ≈Mφ

    Roll-in (Dec 2009) and alignment (Jan 2010)
    Commisioning Mid June 2010

29

KLOE-2 experiment
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Determination of |Vus|×f+(0): improvements
% err
×10-2 BR×10-2 τ×10-2 Δ×10-2 IKℓ×10-2

 KLe3 0.2163(6) 26 9 20 11 6

KLµ3 0.2166(6) 29 15 18 11 8

 KSe3 0.2155(13) 61 60 3 11 6

 K±e3 0.2160(11) 52 31 9 40 6

 K±µ3 0.2158(14) 63 47 8 39 8
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Determination of |Vus|×f+(0): improvements

arXiv: 1003.3868v2 [hep-ex] 29 Mar 2010: Approved by EPJ

% err
×10-2 BR×10-2 τ×10-2 Δ×10-2 IKℓ×10-2

 KLe3 0.2163(6) 26 9 13 11 6

KLµ3 0.2166(6) 29 10 13 11 8

 KSe3 0.2155(13) 61 30 3 11 6

 K±e3 0.2160(11) 52 25 5 25 6

 K±µ3 0.2158(14) 63 23 8 25 8
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Additional 
information
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Vud: error budget

32
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Vud : data

33
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  f0(ΔKπ) is evaluated fitting KLµ3 with a 
dispersive parameterization 

From CT, using fK/fπ=1.193(6) obtain: f+(0)=0.974(12) in agreement with 
RBC/UKQCD10 value: f+(0) = 0.959(5).

Scalar form factor f0(t) = f0(t) f+(0) extrapolation at Callan-Treiman point:~

~

Dispersive parameterization: a test of lattice calculations

 G(t) from Kπ scattering data.
 To fit we use a 3rd order expansion

• links f+(0) and fK/fπ with λ0 measured in Kµ3 decays.

8 FlaviaNet Kaon Working Group: Evaluation of |Vus| and Standard Model tests from kaon data

The most interesting and well-motivated parameteri-
zations of Class I are those based on dispersion relations.
These are based on the observation that the vector and
scalar form factors are analytic functions in the complex
t-plane, except for a cut along the positive real axis for
t ≥ tlim ≡ (mK + mπ)2, where they develop discontinu-
ities. One can therefore write

f̄+,0(t) =
1
π

� ∞

tlim

ds
� Im f̄+,0(s�)
(s� − t− i�)

+ subtractions, (30)

where the imaginary part, Im f̄+,0(s�), can be determined
from data on Kπ scattering, and the ultraviolet compo-
nent of the integral is absorbed into the (polynomial) sub-
traction terms. In the vector case, the dispersion parame-
terization turns out to be numerically very similar to the
pole parameterization due to dominant contribution to
Im f̄+(s�) from the K

∗(892). On the other hand, the dis-
persive parameterization is particularly useful in the scalar
case, where there is no dominant one-particle intermediate
state.

In addition to the analyticity constraints, the scalar
form factor must satisfy an additional theoretical con-
straint dictated by chiral symmetry. The Callan-Treiman
(CT) theorem [72] implies that the scalar form factor at
t = ∆Kπ ≡ m

2
K − m

2
π is determined in terms of fK/fπ

and f+(0) up to O(mu,d) corrections:

C ≡ f̄0(∆Kπ) =
fK

fπ

1
f+(0)

+ ∆CT . (31)

The quantity ∆CT = O(mu,d/4πfπ) can be evaluated in
ChPT. At NLO in the isospin limit [44],

∆CT = (−3.5± 8)× 10−3
, (32)

where the error is a conservative estimate of the higher-
order corrections [73]. Results consistent with Eq. (32)
from NNLO estimates beyond the isospin limit have been
presented in Ref. 49, 74. As discussed in Sect. 3.5.3, the
relation Eq. (31) provides a useful test of the consistency of
the lattice results for fK/fπ and f+(0) with experimental
data on the scalar form factors.

2.2.5 Dispersive parameterization for the form factors

Motivated by the existence of the CT theorem, a particu-
larly appealing dispersive parameterization for the scalar
form factor has been proposed [71]. Two subtractions are
performed, one at t = 0, where by definition f̄0(0) = 1,
and the other at the CT point, t = ∆Kπ. Assuming that
the scalar form factor has no zeroes, this leads to

f̄
disp
0 (t) = exp

�
t

∆Kπ
(ln C −G(t))

�
, (33)

with

G(t) =
∆Kπ(∆Kπ − t)

π

×
� ∞

tlim

ds

s

φ0(s)
(s−∆Kπ)(s− t− i�)

.

(34)

With this parameterization, the only free parameter to be
determined from data is C.

The phase φ0(s) can be identified in the elastic region
with the S-wave (Kπ)I=1/2 scattering phase: performing
two subtractions minimizes the contributions from the un-
known high-energy phase, which in [71] is simply and con-
servatively assumed to lie within the interval [0, 2π). The
resulting function G(t) in Eq. (34) does not exceed 20%
of the expected value of lnC, while the theoretical uncer-
tainties are at most 10% of the value of G(t) [71]. The
expressions for the leading slope parameters in the Taylor
expansion as functions of lnC are [75]

λ�0 =
m

2
π

∆Kπ
[ln C −G(0)] , (35a)

λ��0 = (λ�0)
2 − 2

m
4
π

∆Kπ
G
�(0), (35b)

λ���0 = (λ�0)
3 − 6

m
4
π

∆Kπ
G
�(0)λ�0 − 3

m
6
π

∆Kπ
G
��(0), (35c)

where

G(0) = 0.0398(44), (36a)

−2
m

4
π

∆Kπ
G
�(0) = 4.16(56)× 10−4

, (36b)

−3
m

6
π

∆Kπ
G
��(0) = 2.72(21)× 10−5

. (36c)

A dispersive representation for the vector form factor
can be been built in a similar way [75]. Since there is
no equivalent of the CT theorem in this case, the two
subtractions are both performed at t = 0. The expression
analogous to Eq. (33) for the vector form factor is

f̄
disp
+ (t) = exp

�
t

m2
π

(Λ+ + H(t))
�

, (37)

with
H(t) =

m
2
πt

π

� ∞

tlim

ds

s2

φ+(s)
(s− t− i�)

. (38)

Here the fit parameter is Λ+ ≡ m
2
π df̄+(t)/dt|t=0 and the

phase φ+(s) is derived from P-wave (Kπ)I=1/2 elastic
scattering. As in the case of the scalar form factor, the
uncertainty on H(t) has a small influence on the determi-
nation of Λ+. The expressions for the leading slopes in the
Taylor expansion as functions of Λ+ are [75].

λ�+ = Λ+, (39a)
λ��+ = (λ�+)2 + 2m

2
πH

�(0), (39b)
λ���+ = (λ�+)3 + 6m

2
πH

�(0)λ�+ + 3m
4
πH

��(0), (39c)

where

2m
2
π H

�(0) = 5.79(97)× 10−4
, (40a)

3m
4
π H

��(0) = 2.99(21)× 10−5
. (40b)

The principal results presented in the following sec-
tions are based on the dispersive parameterizations of Eqs. (33)
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