|V_{ud}| & |V_{us}|determinationfrom kaon decays

Paolo Massarotti

INFN Naple -Naples University "Federico II", Flavour Physics and CP Violation 2010 Turin, May 26 2010

$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta_{\rm CKM}.$

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta_{\rm CKM}.$$

error of the order of 0.02%

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta_{\rm CKM}.$$

error of the order of 0.02%

negligeble (10⁻³) see talk by Robert Kowalewski

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta_{\rm CKM}.$$

error of the order of 0.02%

negligeble (10⁻³) see talk by Robert Kowalewski

Need a precise determination of |Vus|

Vud determination

- O Best result: from superallowed 0⁺→0⁺ nuclear transitions.
 (comprehensive review [Towner & Hardy Rep. Prog. Phys. 73 (2010) 046301])
- Master formula $\mathcal{F} = \frac{K}{2G^2_F |V_{ud}|^2 (1 + \Delta_R)}$

3

Vud determination

From most recent neutron β decay result: 0.9758(13) From pion β decay (PDG08):0.9742(26)

The FlaviaNet Kaon working group

•The most precise measurement of |Vus| is obtained from the charged and neutral kaon channel

•FlaviaNet Kaon WG (www.lnf.infn.it/wg/vus/). Recent kaon physics results come from many experimental (BNL-E869, KLOE, KTeV, ISTRA+, NA48) and theoretical (Lattice, χ_{PT} ,) improvements. The main purpose of this working group is to perform precision tests of the Standard Model and to determine with high accuracy fundamental couplings (such as V_{us}) using only published data on kaon decays, taking correlations into account.

Vus determination

Physics results:

• $|\mathbf{V}_{\mathrm{us}}| \times f_{+}(0)$

$$\begin{split} \Gamma_{K_{\ell 3}} &= \frac{G_F^2 m_K^5}{192\pi^3} C_K^2 S_{\rm EW} \left(|V_{us}| f_+^{K^0 \pi^-}(0) \right)^2 I_{K\ell} \left(1 + \delta_{\rm EM}^{K\ell} + \delta_{\rm SU(2)}^{K\pi} \right)^2 \\ & |V_{us}| / |V_{ud}| \times f_K / f_{\pi}. \end{split}$$

$$\begin{split} \frac{\Gamma_{K_{\ell 2}}}{\Gamma_{\pi_{\ell 2}}} &= \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_{\pi}^2} \frac{m_K (1 - m_{\ell}^2 / m_K^2)^2}{m_{\pi} (1 - m_{\ell}^2 / m_{\pi}^2)^2} \left(1 + \delta_{\rm EM} \right) \end{split}$$

Global fits and averages:

- K_L , K_S , and K^{\pm} , dominant BRs and lifetime.
- Parameterization of the $K \rightarrow \pi$ interaction (form factor)

Vus determination

Physics results:

• $|\mathbf{V}_{\mathrm{us}}| \times f_{+}(0)$

$$\begin{split} \Gamma_{K_{\ell 3}} &= \frac{G_F^2 m_K^5}{192\pi^3} C_K^2 S_{\rm EW} \left(|V_{us}| f_+^{K^0 \pi^-}(0) \right)^2 I_{K\ell} \left(1 + \delta_{\rm EM}^{K\ell} + \delta_{\rm SU(2)}^{K\pi} \right)^2 \\ &|V_{us}| / |V_{ud}| \times f_K / f_{\pi}. \end{split}$$

$$\begin{split} \frac{\Gamma_{K_{\ell 2}}}{I_{K_{\ell 2}}} &= \frac{|V_{us}|^2}{I_K^2} \frac{f_K^2}{m_K (1 - m_\ell^2 / m_K^2)^2} \left(1 + \delta_{\rm EM} \right) \end{split}$$

$$\frac{1}{\Gamma_{\pi_{\ell^2}}} = \frac{1}{|V_{ud}|^2} \frac{r_{R}}{f_{\pi}^2} \frac{1}{m_{\pi}(1 - m_{\ell}^2/m_{\pi}^2)^2} (1 + \delta_{\rm EM})$$

Global fits and averages:

- K_L , K_S , and K^{\pm} , dominant BRs and lifetime.
- Parameterization of the $K \rightarrow \pi$ interaction (form factor)

K_L leading branching ratios and τ_L

21 input measurements:	Parameter	Value	S
	$BR(K_{e3})$	0.4056(9)	1.3
5+3 Klev ratios	$BR(K_{\mu 3})$	0.2704(10)	1.5
NA48 K_{e3} /2tr and $\Gamma(3\pi^0)$	$BR(3\pi^0)$	0.1952(9)	1.2
4 KLOE BRs	$BR(\pi^+\pi^-\pi^0)$	0.1254(6)	1.3
KLOE , NA48 $\pi^+\pi^-/K_{l3}$	$BR(\pi^+\pi^-)$	$1.967(7) \times 10^{-3}$	1.1
KLOE , NA48 $\gamma\gamma/3\pi^0$	${ m BR}(\pi^+\pi^-\gamma)$	$4.15(9) \times 10^{-5}$	1.6
PDG ETAFIT for $\pi^+\pi^-/\pi^0\pi^0$	${ m BR}(\pi^+\pi^-\gamma_{ m DE})$	$2.84(8) \times 10^{-5}$	1.3
KLOE $\tau_{\rm L}$ from $3\pi^0$	${ m BR}(2\pi^0)$	$8.65(4) \times 10^{-4}$	1.4
$Vosburgh '72 \tau$	${ m BR}(\gamma\gamma)$	$5.47(4) \times 10^{-4}$	1.1
vusburgn 72 t _L	$ au_{K_L}$	51.16(21) ns	1.1

10 free parameters, 1 constraint: ΣBR=1

All $\pi^+\pi^-/K_{l3}$ measurements are fully inclusive of inner breaksstrahlung KLOE measurement is fully inclusive of DE, negligible in KTeV one

PDG '04 –•

BR(K₁₁₃) [%

Evolution of the average BR values

This fit χ²/ndf = 19.8/12 (7.1%)
Minor differences wrt PDG04:
elimination of numerous old measurements

BR's shifted by 6σ , -6σ , -5σ

K_S leading branching ratios and τ_S

6 input measurements:	Parameter	Value
KLOE BR(Ke3)/BR($\pi^+\pi^-$)	$BR(\pi^+\pi^-)$	0.6920(5)
KLOE BR($\pi^+\pi^-$)/BR($\pi^0\pi^0$)	$BR(\pi^0\pi^0)$	0.3069(5)
Universal lepton coupling	$BR(K_{e3})$	$7.05(8) \times 10^{-4}$
NA48 BR($K_{s}e3$)/BR($K_{L}e3$)	$BR(K_{\mu3})$	$4.69(6) \times 10^{-4}$
$\tau_{\rm S}$: non CPT-constrained fit value,	$ au_{K_S}$	89.59(6) ps
2002 NA48 and 2003 KTeV measurements	\mathcal{D}	

5 free parameters: $K_S \pi \pi$, $K_S \pi^0 \pi^0$, $K_S e^3$, $K_S \mu^3$, τ_S , 1 constraint: $\Sigma BR=1$

KLOE meas. completely determine the leading BR values.

This fit $\chi^2/ndf = 0.015/1$ (90%) S ≈ 1 for any of the output values.

K[±] leading branching ratios and τ^{\pm}

D
Γ
B
В
В
В
В
В
$ au_{ m c}$

Parameter	Value	S
$BR(K_{\mu 2})$	63.47(18)%	1.3
$BR(\pi\pi^0)$	20.61(8)%	1.1
$BR(\pi\pi\pi)$	5.73(16)%	1.2
$BR(K_{e3})$	5.078(31)%	1.3
$BR(K_{\mu 3})$	3.359(32)%	1.9
$BR(\pi\pi^0\pi^0)$	1.757(24)%	1.0
$ au_{K^{\pm}}$	12.384(15) ns	1.2

7 free parameters, 1 constraint: ΣBR=1 Don't use the result from Lobkowicz (τ) , don't use the BRE from Chiang:

• 6 BRs constrained to sum to unit. **PDG**•, the correlation matrix not available

V_{ud} & **V**_{us} determination from kaon decays P. Massarotti FP&CPV torino May 26, 2010 10

Evolution of the average BR values

- This fit $\chi^2/ndf = 25.8/11$ (0.69%); PDG09 fit: $\chi^2/ndf = 52/25$ (0.13%)
- some conflict among newer meas. involving BR(Ke3): the pulls are +0.6 and -2.1 for NA48 and KLOE respectively
- •some conflict among newer meas. involving BR(Kµ3):

the pulls are +1.0 and -3.2 for NA48 and KLOE respectively

Vus determination

Physics results:

• $|\mathbf{V}_{\mathrm{us}}| \times f_{+}(0)$

$$\begin{split} \Gamma_{K_{\ell 3}} &= \frac{G_F^2 m_K^5}{192\pi^3} C_K^2 S_{\rm EW} \left(|V_{us}| f_+^{K^0 \pi^-}(0) \right)^2 I_{K\ell} \left(1 + \delta_{\rm EM}^{K\ell} + \delta_{\rm SU(2)}^{K\pi} \right)^2 \\ &|V_{us}| / |V_{ud}| \times f_K / f_{\pi}. \end{split}$$

$$\begin{split} \frac{\Gamma_{K_{\ell 2}}}{I_{K_{\ell 2}}} &= \frac{|V_{us}|^2}{I_K^2} \frac{f_K^2}{I_K^2} \frac{m_K (1 - m_\ell^2 / m_K^2)^2}{I_K^2} \left(1 + \delta_{\rm EM} \right) \end{split}$$

$$\frac{1}{\Gamma_{\pi_{\ell 2}}} = \frac{1}{|V_{ud}|^2} \frac{m_{\pi}}{f_{\pi}^2} \frac{1}{m_{\pi}(1 - m_{\ell}^2/m_{\pi}^2)^2} (1 + \delta_{\rm EM})$$

Global fits and averages:

- K_L , K_S , and K^{\pm} , dominant BRs and lifetime.
- Parameterization of the $K \rightarrow \pi$ interaction (form factor)

Parameterization of $K_{\ell 3}$ form factors

• Hadronic K $\rightarrow \pi$ matrix element is described by two form factors $f_+(t)$ and $f_0(t)$ defined by: $\langle \pi(p_\pi) | \bar{s} \gamma_\mu u | K(p_K) \rangle = (p_\pi + p_K)_\mu f_+^{K\pi}(t) + (p_K - p_\pi)_\mu f_-^{K\pi}(t)$

$$f_0(t) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$$

- Experimental or theoretical inputs to define *t*-dependence of *f*_{+,0}(t). *f*₋(t) term negligible for K_{e3}.
 ➤ Taylor expansion: *f*_{+,0}^{Taylor}(t) = 1 + λ'_{+,0} t/m²₋₊ + 1/2 λ''_{+,0} (t/m²₋₊)²
- λ' and λ'' are strongly correlated: -95% for $f_+(t)$, and -99.96% for $f_0(t)$.

One parameter parameterizations: ➤ Pole parameterization

$$\tilde{f}_{+,0}(t) = \frac{M_{V,S}^2}{M_{V,S}^2 - t}$$

> Dispersive approach plus $K\pi$ scattering data for both $f_+(t)$ and $f_0(t)$

$$\bar{f}_{+}^{\text{disp}}(t) = \exp\left[\frac{t}{m_{\pi}^2}\left(\Lambda_{+} + H(t)\right)\right] \qquad \bar{f}_{0}^{\text{disp}}(t) = \exp\left[\frac{t}{\Delta_{K\pi}}(\ln C - G(t))\right]$$

 $|V_{ud}| \& |V_{us}|$ determination from kaon decays

Vector form factor from K_{e3}

Quadratic expansion:

- Measurements from ISTRA+, KLOE, KTeV, NA48 with K_Le3 and K-e3 decays.
- Good fit quality: $\chi^2/ndf=5.3/6(51\%)$ for all data; $\chi^2/ndf=4.7/4(32\%)$ for K_L only
- The significance of the quadratic term is 4.2 σ from all data and 3.5 σ from K_L only.
- Using all data or K_L only changes the space phase integrals I_{e3}^0 and I_{e3}^{\pm} by 0.06%.
- Errors on I_{e3} are significantly smaller when K- data are included.

A pole parameterization is in good agreement with present data:

 $\tilde{f}_{+}(t) = M_V^2/(M_V^2 - t)$, with $M_V \sim 892$ MeV $\lambda' = (m_{\pi^+}/M_V)^2$; $\lambda'' = 2\lambda'^2$

- All four experiments quote value for M_V for pole fit to Ke3 data. The average value is $Mv = 871 \pm 5 \text{ MeV} (\chi^2/\text{ndf}=3.8/3)$
- The values for λ_{+}' and λ_{+}'' from pole expansion are in agreement with quadratic fit results.
- Using quadratic averages or pole fit results changes I_{e3}^0 by 0.11%.

Improvements: dispersive parameterization for $f_+(t)$, with good analytical and unitarity properties and a correct threshold behavior,

(e.g. Bernard, Oertel, Passemar, Stern Phys. Rev. Lett. D80 (2009) 034034)

V_{ud} & **V**_{us} determination from kaon decays P. Massarotti FP&CPV torino May 26, 2010 14

Vector and scalar form factor from K_{µ3}

- λ_{+}' , λ_{+}'' and λ_{0} measured for Kµ3 from ISTRA+, KLOE, KTeV, and NA48.
- NA48 results are difficult to accomodate in the $[\lambda_{+}', \lambda_{+}'', \lambda_{0}]$ space.
- Fit probability varies from 3×10^{-7} (with NA48) to 14.5% (without NA48).

• Because of correlation, is not possible measure λ_0'' at any plausible level of stat.

• Neglecting a quadratic term in the param. of scalar FF implies: $\lambda_0' \rightarrow \lambda_0' + 3.5 \lambda_0''$

Vector and scalar form factor from $K_{\mu3}$

The dispersive form factor parameterization clearly illustrate the contrast between $K_{\mu3}$ result from NA48 and those from the other experiment

|V_{ud}| & |V_{us}| determination from kaon decays P. Massarotti FP&CPV torino May 26, 2010 16

Vector and scalar form factor from $K_{\ell 3}$

•Comparison of phase-space integrals evaluated from our averages of results of quadratic-linear and dispersive fits

Integral	$\lambda'_+,\lambda''_+,\lambda_0$	$\Lambda_+, \ln C$	Rel. diff.
$I(K_{e3}^0)$	0.15457(20)	0.15476(18)	+0.12%
$I(K_{e3}^{\pm})$	0.15894(21)	0.15922(18)	+0.18%
$I(K^0_{\mu 3})$	0.10266(20)	0.10253(16)	-0.13%
$I(K_{\mu3}^{\pm})$	0.10564(20)	0.10559(17)	-0.05%
$ ho(\dot{K_{e3}},K_{\mu3})$	+0.56	+0.38	

The intergals, when evaluated from the dispersive fit results, tend to be slightly greater (no more than 0.2%) than from the the quadratic fit results.

Global fits and averages:

- K_L , K_S , and K^{\pm} , dominant BRs and lifetime.
- Parameterization of the $K \rightarrow \pi$ interaction (form factor)

Physics results:

- $|\mathbf{V}_{\mathrm{us}}| \times f_{+}(0)$
- $|\mathbf{V}_{us}|/|\mathbf{V}_{ud}| \times f_K/f_{\pi}$.
- Theoretical estimations of $f_+(0)$ and f_K/f_{π} .
- \bullet V_{us} and V_{ud} determinations.
- Bounds on helicity suppressed amplitudes.

Determination of $|V_{us}| \times f_{+}(0)$

$$\Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} M_{K}^{5}}{192\pi^{3}} S_{EW} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{K\ell}(\lambda_{+,0}) (1 + \delta_{SU(2)}^{K} + \delta_{em}^{K\ell})^{2}$$

with $K = K^+$, K^0 ; $\ell = e, \mu$ and $C_K^2 = 1/2$ for K^+ , 1 for K^0

Inputs from theory:

- S_{EW} Universal short distance EW correction (1.0232)
- $\frac{\delta^{K}_{SU(2)}}{\text{strong SU}(2) \text{ breaking}}$
- $\frac{\delta^{K\ell}}{e^{m}}$ Long distance EM effects

 $f_{+}^{K^{0}\pi^{-}}(0)$ Form factor at zero momentum transfer (t=0)

Callan-Treiman

 $I_{K\ell}(\lambda)$

Inputs from experiment:

 $\Gamma(K_{l3(\gamma)})$ Branching ratios properly inclusive of radiative effects; lifetimes

Phase space integral: λ 's parameterize form factor dependence on *t* : K_{e3} : only λ_+

 $K_{\mu\beta}$: need λ_+ and λ_0

 $|V_{ud}| \& |V_{us}|$ determination from kaon decays

FP&CPV torino May 26, 2010 19

SU(2) and *em* corrections

(values used to extract $|V_{us}|f_{+}(0)$)

- δ_{em} for full phase space: all measurements assumed fully inclusive.
- Different estimates of δ_{em} agree within the quoted errors.
- Available correlation matrix between different corrections for δ_{em} .

Determination of $|V_{us}| \times f_{+}(0)$

$\Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} M_{K}^{5}}{192\pi^{3}} S_{EW} V_{uS} ^{2} f_{+}^{K^{0}\pi^{-}}(0) ^{2} I_{K\ell}(\lambda_{+,0}) (1 + \delta^{K}_{SU(2)} + \delta^{K\ell}_{em})^{2}$								
0.213 0.214 0.215	0.216 0.217	-		% err ×10⁻²	BR ×10 ⁻²	τ×10-2	∆×10-2	I _{Kt} ×10-2
K _L e3	 -	$K_L e3$	0.2163(6)	26	9	20	11	6
Κ_L μ3		<i>К_L</i> µ3	0.2166(6)	29	15	18	11	8
K _S e3		K _s e3	0.2155(13)	61	60	3	11	6
K [±] e3	•	K±e3	0.2160(11)	52	31	8	40	6
Κ [±] μ 3		<i>К</i> ±µ3	0.2158(14)	63	47	8	39	8
Average: $ V_{us} f_+(0) = 0.2163(5) \qquad \chi^2/\text{ndf} = 0.77/4 (94\%)$								
V _{ud} & V _{us} determination from kaon decays P. Massarotti FP&CPV torino May 26, 2010 21								

Theoretical estimate of $f_{\perp}(0)$

Leutwyler & Roos estimate still widely used: $f_{+}(0) = 0.961(8).$

Lattice evaluations generally agree well with this value; use RBC-UKQCD10 value: $f_{+}(0) = 0.959(5) (0.5\%)$ accuracy, total err.).

 $|V_{ud}| \& |V_{us}|$ determination from kaon decays

P. Massarotti

FP&CPV torino May 26, 2010 22 V_{us}/V_{ud} determination from BR(K_{µ2})

K12: $|V_{us}|/|V_{ud}| f_K / f_{\pi} = 0.2758(5)$ and $f_K / f_{\pi} = 1.193(6)$, obtain $|V_{us}|/|V_{ud}| = 0.2312(13)$

 $|V_{ud}| \& |V_{us}|$ determination from kaon decays

P. Massarotti

FP&CPV torino May 26, 2010 23

 $K_{\mu 2}$: sensitivity to NP

Comparison of V_{us} from $K_{\ell 2}$ (helicity suppressed) and from $K_{\ell 3}$ (helicity allowed) To reduce theoretical uncertainties study the quantity:

$$R_{l23} = \left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right|$$

Within SM $R_{\ell 23} = 1$; NP effects can show as scalar currents due to a charged Higgs:

$$R_{\mu 23} \approx \left| 1 - \frac{m_{K^+}^2}{m_{H^+}^2} \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$

 $K_{\mu 2}$: sensitivity to NP!

an

 $R_{\ell 23}$ is accessible via $BR(K_{\mu 2})/BR(\pi_{\mu 2})$, $V_{us}f_{+}(0)$, and V_{ud} , and $f_{K}/f_{\pi}/f_{+}(0)$ determinations.

- Using K[±] fit results, assuming unitarity for Vus(K_{$\ell 3$}) and using f_K/f_{π}/f₊(0) from lattice: R_{$\ell 23$}= 0.999(7)
- Uncertainty dominated by $f_{\rm K}/f_{\pi}/f_{+}(0)$.
- 95% CL excluded region (with $\varepsilon_0 \sim 0.01$).
- In tan β -M_{H±} plane, R_{µ23} fully cover the region uncovered by BR(B $\rightarrow \tau \nu$).

Conclusions

- Dominant K_S , K_L , and K^{\pm} BRs, and lifetime known with very good accuracy.
- Dispersive approach for form factors.
- Constant improvements from lattice calculations of $f_+(0)$ and f_K/f_{π} :
- $|V_{us}| f_{+}(0)$ at 0.2% level.
- $|V_{us}|$ measured with 0.6% accuracy (with $f_{+}(0)=0.959(5)$) Dominant contribution to uncertainty on $|V_{us}|$ still from $f_{+}(0)$. CKM unitarity test satisfied at 0.17 σ level
- Comparing $|V_{us}|$ values from Kµ2 and K13, exclude large region in the $(m_{H^+}, \tan\beta)$ plane, complementary to results from $B \rightarrow \tau \nu$ decays.

KLOE-2 experiment

28

KLOE-2 experiment

 $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-X$

KLOE-2 experiment

Minimal detector upgrade

 Tagger for γγ physics: to detect off-momentum e[±] from

$$e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-X$$

- Low Energy Tagger (130-230 MeV) calorimeters, LYSO + SiPM
- High Energy Tagger (E > 400 MeV) position sensitive detectors (strong energy-position correlation ⇒ use the DAΦNE magnets as e[±] spectrometer)
- No QCAL on quadrupoles (Pb shields)
- Luminosity goal: 5 fb⁻¹ @ √s ≈M_φ
 Roll-in (Dec 2009) and alignment (Jan 2010)
 Commisioning Mid June 2010

Determination of $|V_{us}| \times f_+(0)$: improvements

		% err ×10⁻²	BR ×10 ⁻²	τ×10-2	Δ×10-2	I _{Kl} ×10-2
$K_L e3$	0.2163(6)	26	9	20	11	6
<i>К_L</i> µ3	0.2166(6)	29	15	18	11	8
K _S e3	0.2155(13)	61	60	3	11	6
K±e3	0.2160(11)	52	31	9	40	6
<i>K</i> ±µ3	0.2158(14)	63	47	8	39	8

V_{ud} & **V**_{us} determination from kaon decays **P. Massarotti FP&CPV torino May 26, 2010 30**

Determination of $|V_{us}| \times f_+(0)$: improvements

		% err ×10⁻²	BR ×10 ⁻²	τ×10-2	Δ×10-2	I _{Kl} ×10-2
$K_L e3$	0.2163(6)	26	9	13	11	6
<i>К_L</i> µ3	0.2166(6)	29	10	13	11	8
K _S e3	0.2155(13)	61	30	3	11	6
K±e3	0.2160(11)	52	25	5	25	6
<i>K</i> ±µ3	0.2158(14)	63	23	8	25	8

arXiv: 1003.3868v2 [hep-ex] 29 Mar 2010: Approved by EPJ

Additional information

|Vud| & |Vus| determination from kaon decaysP. MassarottiFP&CPV torino May 26, 201031

Vud: error budget

OPPORTUNITIES FOR IMPROVEMENT

- Goal remains to tighten the window for new physics by reducing the uncertainty on V_{ud}.
- Uncertainty on calculated radiative correction ∆_R is the dominant contribution to the error budget.
- Nuclear-structure-dependent corrections, δ_c and δ_{NS}, can be tested by experiment; this has already led to improvements, but more are still possible.

Data on "well known" transitions can be made more precise, and new cases can be measured.

Vud : data

WORLD DATA FOR $0^+ \rightarrow 0^+$ DECAY, 2008

 $|V_{ud}| \& |V_{us}|$ determination from kaon decays

P. Massarotti

FP&CPV torino May 26, 2010 33

Dispersive parameterization: a test of lattice calculations

Scalar form factor $f_0(t) = \widetilde{f_0}(t) f_+(0)$ extrapolation at **Callan-Treiman** point:

$$\bar{f}_0(\Delta_{K\pi}) = \frac{f_K}{f_\pi} \frac{1}{f_+(0)} + \Delta_{CT} \qquad \Delta_{CT} = (-3.5 \pm 8) \times 10^{-3}$$

links $f_{+}(0)$ and $f_{\rm K}/f_{\pi}$ with λ_0 measured in Kµ3 decays.

 $\widetilde{f}_0(\Delta_{K\pi})$ is evaluated fitting K_Lµ3 with a dispersive parameterization

$$\tilde{f}_0(t) = \exp\left(\frac{t}{\Delta_{K\pi}}\log(C - G(t))\right)$$

G(t) from $K\pi$ scattering data. To fit we use a 3rd order expansion

From CT, using $f_K/f_{\pi}=1.193(6)$ obtain: $f_+(0)=0.974(12)$ in agreement with RBC/UKQCD10 value: $f_+(0) = 0.959(5)$.