THEORY OF HADRONIC B DECAYS

[GUIDO BELL]

UNIVERSITY OF BERN

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

FLAVOR PHYSICS AND CP VIOLATION

CAVEAT

IN 20-25 MINUTES I WILL NOT BE ABLE TO COVER ALL OF THE LATEST DEVELOPMENTS IN THIS WIDESPREAD FIELD.

AS I AM GOING TO DISCUSS CONCEPTUAL AS WELL AS PHENOMENOLOGICAL ASPECTS, THE PHENOMENOLOGICAL PART OF MY TALK WILL NECESSARILY BE SELECTIVE AND SHORT.

I APOLOGIZE FOR NOT COVERING YOUR FAVOURITE TOPIC(S)!

OUTLINE

THEORY

REVIEW OF QCDF / PQCD / SCET RECENT DEVELOPMENTS: CHARMING PENGUINS GLAUBER GLUONS IN PQCD PERTURBATIVE CORRECTIONS IN QCDF

PHENOMENOLOGY

TREE-DOMINATED DECAYS: $B \rightarrow \pi \pi / \pi \rho / \rho \rho$ PENGUIN-DOMINATED DECAYS: $B \rightarrow \pi K$

THEORY

Charmless hadronic B decays

Particularly rich laboratory to probe the nature of flavour-changing

 $b \rightarrow u \bar{u} d / u \bar{u} s$ $b \rightarrow d \bar{q} q / s \bar{q} q$

quark transitions and to test the CKM mechanism of CP violation

The challenge: quantitative control over $\langle M_1 M_2 | Q_i | B \rangle$

Charmless hadronic B decays

Particularly rich laboratory to probe the nature of flavour-changing

 $b \rightarrow u \bar{u} d \ / \ u \bar{u} s \qquad b \rightarrow d \bar{q} q \ / \ s \bar{q} q$

quark transitions and to test the CKM mechanism of CP violation

The challenge: quantitative control over $\langle M_1 M_2 | Q_i | B \rangle$

Two complementary strategies:

- ► flavour symmetries (isospin, SU(3),...) [Gronau et al; Fleischer et al; ... 90+] extract hadronic matrix elements from data use approximate symmetries of QCD ⇒ relate strong decay amplitudes
- dynamical approaches

calculate hadronic matrix elements in QCDexploit factorization in heavy quark limit $m_b \gg \Lambda_{QCD}$ [Beneke et al; Li et al; Bauer et al; ... 99+]some additional insights from light-cone sum rules[Khodjamirian et al 00+]

Factorization

Exploit $m_b \gg \Lambda_{QCD}$ to disentangle

- ▶ short-distance effects $\sim m_b$ \Rightarrow perturbatively calculable
- $\blacktriangleright \ \ \mbox{long-distance effects} \sim \Lambda_{\it QCD} \qquad \Rightarrow \qquad \mbox{universal hadronic parameters}$

This is not a model, but describes QCD in the well-defined limit $m_b
ightarrow \infty$

Why are there three different incarnations of factorization?

Factorization

Exploit $m_b \gg \Lambda_{QCD}$ to disentangle

- ▶ short-distance effects $\sim m_b$ \Rightarrow perturbatively calculable
- $\blacktriangleright \ \ \mbox{long-distance effects} \sim \Lambda_{\it QCD} \qquad \Rightarrow \qquad \mbox{universal hadronic parameters}$

This is not a model, but describes QCD in the well-defined limit $m_b \rightarrow \infty$

Why are there three different incarnations of factorization?

Factorization of hard exclusive processes pioneered more than 30 years ago for $\pi\gamma^* \to \pi$

$$\langle \pi | J | \pi \rangle \simeq \int du \, dv \, T(u, v) \, \phi_{\pi}(u) \, \phi_{\pi}(v)$$
 [Brodsky, Lepage 79]

For charmless hadronic B decays expect

$$\langle M_1 M_2 | Q_i | B \rangle \simeq \int d\omega \, du \, dv \, T_i(\omega, u, v) \phi_B(\omega) \phi_{M_1}(v) \phi_{M_2}(u)$$
 ?

Problem: convolutions over ω and v diverge \Rightarrow not dominated by hard gluon exchange!? but still: convolution over u finite \Rightarrow "colour transparency" [Bjorken 89]

QCDF / pQCD / SCET

QCD factorization

[Beneke, Buchalla, Neubert, Sachrajda 99]

$$\langle M_1 M_2 | Q_i | B \rangle \simeq F^{BM_1}(0) \int du T_i^I(u) \phi_{M_2}(u)$$

$$+ \int d\omega \, du \, dv T_i^{II}(\omega, u, v) \phi_B(\omega) \phi_{M_1}(v) \phi_{M_2}(u)$$

convolutions are finite, endpoint divergence hidden in F^{BM1} which is not factorized

QCDF / pQCD / SCET

QCD factorization

[Beneke, Buchalla, Neubert, Sachrajda 99]

$$\langle M_1 M_2 | Q_i | B \rangle \simeq F^{BM_1}(0) \int du T_i^{I}(u) \phi_{M_2}(u)$$

$$+ \int d\omega \, du \, dv T_i^{II}(\omega, u, v) \phi_B(\omega) \phi_{M_1}(v) \phi_{M_2}(u)$$

convolutions are finite, endpoint divergence hidden in F^{BM1} which is not factorized

► perturbative QCD [Keum, Li, Sanda 00] $\langle M_1 M_2 | Q_i | B \rangle \simeq \int d\omega \, du \, dv \, dk_{i\perp} \, T_i(\omega, u, v, k_{i\perp}) \, \phi_B(\omega, k_{1\perp}) \, \phi_{M_1}(v, k_{2\perp}) \, \phi_{M_2}(u, k_{3\perp})$ + Sudakov resummation \Rightarrow endpoint divergence smeared out by transverse momenta

QCDF / pQCD / SCET

QCD factorization

[Beneke, Buchalla, Neubert, Sachrajda 99]

$$\langle M_1 M_2 | Q_i | B \rangle \simeq F^{BM_1}(0) \int du T_i^I(u) \phi_{M_2}(u)$$

$$+ \int d\omega \, du \, dv T_i^{II}(\omega, u, v) \phi_B(\omega) \phi_{M_1}(v) \phi_{M_2}(u)$$

convolutions are finite, endpoint divergence hidden in F^{BM_1} which is not factorized

► perturbative QCD [Keum, Li, Sanda 00]

$$\langle M_1 M_2 | Q_i | B \rangle \simeq \int d\omega \, du \, dv \, dk_{i\perp} \, T_i(\omega, u, v, k_{i\perp}) \, \phi_B(\omega, k_{1\perp}) \, \phi_{M_1}(v, k_{2\perp}) \, \phi_{M_2}(u, k_{3\perp})$$

+ Sudakov resummation \Rightarrow endpoint divergence smeared out by transverse momenta

► Soft-collinear effective theory [Bauer, Pirjol, Rothstein, Stewart 04]
SCET = QCDF: simply EFT vs diagrammatical formulation
BPRS ≠ BBNS: phenomenological implementation for
$$B \rightarrow M_1 M_2$$
 quite different
issues: F^{BM_1} traded for ξ^{BM_1} , $\alpha_s(\sqrt{\Lambda m_b})$ non-perturbative, ... (minor)
long-distance charm loops, zero-bin subtractions (major)

Long-distance charm loops

Old charming penguin story - two different questions:

- power-suppressed but numerically important
 - \Rightarrow not supported by light-cone sum rule estimate
- leading power spoiling factorization [BPRS vs BBNS 04,05]

does the threshold region with a non-relativistic $c\bar{c}$ pair require a special treatment?

Recent work addresses second question

[BBNS 09]

[Colangelo et al. 89: Ciuchini et al. 97+]

[Khodjamirian, Mannel, Melic 03]

- \Rightarrow global quark-hadron duality holds in (a) and (c), but breaks down in (b)
- \Rightarrow no special treatment required in (c), long-distance charm loops are power-suppressed

Glauber gluons in pQCD

It has been realized recently that k_T -factorization breaks down in $pp \rightarrow h_1 h_2 X$ at high p_T

- > problem related to a peculiar mode: Glauber gluons
- effect is a non-universal long-distance contribution \Rightarrow ruins k_T -factorization
- problem not present in collinear factorization

Important for pQCD approach to non-leptonic B decays

- ▶ confirmed that problem exists \Rightarrow modification of pQCD approach [Li, Mishima 09]
- ▶ claimed that it leads to an universal soft factor $e^{iS} \Rightarrow k_T$ -factorization still holds
- ► e^{iS} from fit to Br $(\pi^0\pi^0)$ \Rightarrow large complex C \Rightarrow "solves" $\pi\pi/\pi K$ puzzles

Issues: > operator definition of soft factor?

- ▶ if universal why associated to π but not to ρ ? \Rightarrow would worsen Br($\rho^0 \rho^0$)
- > at present I consider this rather as a fit than as a dynamical explanation

[Collins, Qiu 07]

Perturbative corrections in QCDF

Ongoing effort to compute NNLO corrections in QCDF

 $\langle M_1 M_2 | Q_i | B \rangle \simeq F^{BM_1} T_i^{\prime} \otimes \phi_{M_2} + T_i^{\prime \prime} \otimes \phi_B \otimes \phi_{M_1} \otimes \phi_{M_2}$

strong phases $\sim O(\alpha_s) \Rightarrow \text{NNLO}$ is first correction for direct CP asymmetries!

Status	2-loop vertex corrections (T_i^I)	1-loop spectator scattering (T_i^{II})
Trees	[GB 07, 09] [Beneke, Huber, Li 09]	[Beneke, Jäger 05] [Kivel 06] [Pilipp 07]
Penguins	in progress	[Beneke, Jäger 06] [Jain, Rothstein, Stewart 07]

- factorization found to hold (as expected) at highly non-trivial order
- direct CP asymmetries not yet available at NNLO
- first NNLO results for CP-averaged branching ratios of tree-dominated decays

[GB, Pilipp 09; Beneke, Huber, Li 09]

Summary of theory part

	BBNS (QCDF)	pQCD	BPRS (SCET)
$\alpha_{s}(\sqrt{\Lambda m_{b}})$	perturbative	perturbative	non-perturbative
charm loops	perturbative (small phase)	perturbative (small phase)	non-perturbative (large phase from fit to data)
weak annihilation (power correction)	non-perturbative (crude model, arbitrary phase)	perturbative (large phase)	perturbative (with zero bins, small phase)
strong phases	generically small $(\sim \alpha_{s}, 1/m_{b})$	can be sizeable (annihilation, Glaubers)	can be sizeable (charm loops)
perturbative calculation	partially NNLO	partially NLO	NLO
hadronic input	from lattice + QCD sum rules	from QCD sum rules + data, model $\phi_B(x, b)$	from QCD sum rules + data, model $\xi_J^{BM}(z)$

- theory predictions for direct CP asymmetries can unfortunately differ a lot!
- > measurements (even bounds) of pure annihilation decays highly appreciated:

$$B_d \to K^- K^+, B_s \to \pi \pi / \pi \rho / \rho \rho$$

PHENOMENOLOGY

$B \to \pi \pi / \pi \rho / \rho \rho$

Large $Br(\pi^0\pi^0) = (1.55 \pm 0.19) \cdot 10^{-6}$ challenging for dynamical approaches

- ▶ seems to indicate large C/T \Rightarrow interesting in view of πK puzzle
- ▶ Babar: $(1.83 \pm 0.21 \pm 0.13) \cdot 10^{-6}$ Belle: $(1.1 \pm 0.3 \pm 0.1) \cdot 10^{-6}$
- $\Rightarrow\,$ reconsider in the light of NNLO calculation in QCDF and $\,\pi\rho/\rho\rho\,$ data

Tree amplitudes now completely determined to NNLO

$$T \sim \alpha_{1}(\pi\pi) = [1.008]_{V_{0}} + [0.022 + 0.009 i]_{V_{1}} + [0.024 + 0.026 i]_{V_{2}}$$

- $[0.014]_{S_{1}} - [0.016 + 0.012 i]_{S_{2}} - [0.008]_{1/m_{b}}$
= $1.015^{+0.020}_{-0.029} + (0.023^{+0.015}_{-0.015}) i$
$$C \sim \alpha_{2}(\pi\pi) = [0.224]_{V_{0}} - [0.174 + 0.075 i]_{V_{1}} - [0.029 + 0.046 i]_{V_{2}}$$

+ $[0.084]_{S_{1}} + [0.037 + 0.022 i]_{S_{2}} + [0.052]_{1/m_{b}}$
= $0.194^{+0.130}_{-0.095} - (0.099^{+0.057}_{-0.056}) i$

individual NNLO corrections quite significant, but substantial cancellations

► Re(α_2) still uncertain, mainly due to poor knowledge of $\lambda_B^{-1} = \int \frac{d\omega}{\omega} \phi_B(\omega)$

CP-averaged branching ratios

		-	
Mode	QCDF	В	Experiment
$\pi^{-}\pi^{0}$	$6.22^{+2.37}_{-2.01}$	5.46	$5.59\substack{+0.41 \\ -0.40}$
$\rho_L^- \rho_L^0$	$21.0^{+8.5}_{-7.3}$	21.3	$22.5^{+1.9}_{-1.9}$
$\pi^- \rho^0$	$9.34^{+4.00}_{-3.23}$	10.4	$8.3^{+1.2}_{-1.3}$
$\pi^0 \rho^-$	$15.1^{+5.7}_{-5.0}$	11.9	$10.9^{+1.4}_{-1.5}$
$\pi^+\pi^-$	8.96 ^{+3.78} -3.32	5.21	$5.16^{+0.22}_{-0.22}$
$\pi^{0}\pi^{0}$	$0.35^{+0.37}_{-0.21}$	0.63	$1.55^{+0.19}_{-0.19}$
$\pi^+ \rho^-$	22.8 ^{+9.1} -8.0	13.2	$15.7^{+1.8}_{-1.8}$
$\pi^- \rho^+$	$11.5^{+5.1}_{-4.3}$	8.41	$7.3^{+1.2}_{-1.2}$
$\pi^{\pm}\rho^{\mp}$	34.3 ^{+11.5} -10.0	21.6	$23.0^{+2.3}_{-2.3}$
$\pi^0 \rho^0$	$0.52\substack{+0.76 \\ -0.42}$	1.64	$2.0^{+0.5}_{-0.5}$
$\rho_L^+ \rho_L^-$	$30.3^{+12.9}_{-11.2}$	22.3	$23.6^{+3.2}_{-3.2}$
$\rho_L^0 \rho_L^0$	$0.44^{+0.66}_{-0.37}$	1.33	$0.69^{+0.30}_{-0.30}$

B: enhanced colour-suppressed amplitude with

$$\lambda_B=$$
 0.2, $\mathit{F}^{B\pi}_+=$ 0.21 and $\mathit{A}^{B
ho}_0=$ 0.27

 theo. uncertainties highly correlated (F^{BM1}, |V_{ub}|)

- ► colour-suppressed modes $\pi^0 \pi^0 / \pi^0 \rho^0 / \rho^0 \rho^0$ rather uncertain (λ_B and 1/ m_b)
- $\rho^0 \rho^0$ and $\pi^0 \rho^0$ (with smaller penguins) fit better than $\pi^0 \pi^0$
- preference for enhanced colour-suppressed amplitude

[for a similar analysis cf. Beneke, Huber, Li 09]

Testing factorization

Eliminate dependence on F^{BM_1} and $|V_{ub}|$ via

$$\mathcal{R}_{M_3}(M_1M_2) = \frac{\Gamma(B \to M_1M_2)}{d\Gamma(B \to M_3 \ell \nu)/dq^2|_{q^2=0}}$$

 \Rightarrow requires measurement of semileptonic decay spectrum and extrapolation to $q^2 = 0$

$$\Rightarrow |V_{ub}|F_{+}^{B\pi}(0) = (9.1 \pm 0.7) \cdot 10^{-4}$$

currently insufficient to extract $|V_{ub}|A_0^{B\rho}(0)$

Testing factorization

Eliminate dependence on F^{BM_1} and $|V_{ub}|$ via

$$\mathcal{R}_{M_3}(M_1M_2) = \frac{\Gamma(B \to M_1M_2)}{d\Gamma(B \to M_3\ell\nu)/dq^2|_{q^2=0}}$$

ľ

Mode	QCDF	В	Experiment
$\mathcal{R}_{\pi}(\pi^{-}\pi^{0})$	$0.70^{+0.12}_{-0.08}$	0.95	$0.81^{+0.14}_{-0.14}$
$\mathcal{R}_{\rho}(\rho_L^-\rho_L^0)$	$1.91\substack{+0.32 \\ -0.23}$	2.38	n.a.
$\mathcal{R}_{ ho}(\pi^{-}\rho^{0})$	$0.85^{+0.22}_{-0.14}$	1.16	n.a.
$\mathcal{R}_{\pi}(\pi^{0}\rho^{-})$	$1.71^{+0.27}_{-0.24}$	2.07	$1.57^{+0.32}_{-0.32}$
$\mathcal{R}_{\pi}(\pi^{+}\pi^{-})$	$1.09\substack{+0.22\\-0.20}$	0.97	$0.80\substack{+0.13 \\ -0.13}$
$\mathcal{R}_{\pi}(\pi^+ ho^-)$	$2.77^{+0.32}_{-0.31}$	2.46	$2.43^{+0.47}_{-0.47}$
${\cal R}_ ho(\pi^- ho^+)$	$1.12\substack{+0.20\\-0.14}$	1.01	n.a.
$\mathcal{R}_{\rho}(\rho_L^+\rho_L^-)$	$2.95\substack{+0.37 \\ -0.35}$	2.68	n.a.
$R(\rho_L^-\rho_L^0/\rho_L^+\rho_L^-)$	$0.65^{+0.16}_{-0.11}$	0.89	$0.89^{+0.14}_{-0.14}$
$R(\pi^-\pi^0/\pi^+\pi^-)$	$0.65^{+0.19}_{-0.14}$	0.98	$1.01\substack{+0.09 \\ -0.09}$

•
$$\pi^- \pi^0 / \rho^- \rho^0$$
 provide clean access to $|T + C|$

- good overall description
 (in particular for small λ_B)
- only exception Br(π⁰π⁰) which has a substantial penguin contribution and large theo. uncertainties

B: enhanced colour-suppressed amplitude with $\lambda_B = 0.2$, $F_{\pm}^{B\pi} = 0.21$ and $A_0^{B\rho} = 0.27$

[for a similar analysis cf. Beneke, Huber, Li 09]

[[]GB, Pilipp 09]

The $B \rightarrow \pi K$ puzzle

Since 2006 branching ratios do no longer look puzzling

	QCDF	Experiment
R _c	$1.15^{+0.21}_{-0.18}$	1.12 ± 0.07
R _n	$1.16\substack{+0.24 \\ -0.20}$	1.02 ± 0.07

$$R_{c} = 2 \frac{\Gamma(B^{-} \to \pi^{0} K^{-})}{\Gamma(B^{-} \to \pi^{-} \bar{K}^{0})} \qquad R_{n} = \frac{1}{2} \frac{\Gamma(\bar{B}_{d}^{0} \to \pi^{+} K^{-})}{\Gamma(\bar{B}_{d}^{0} \to \pi^{0} \bar{K}^{0})}$$

But direct CP asymmetries look somewhat odd

A _{CP} [%]	QCDF	Experiment
$\pi^0 K^-$	$9.4^{+12.1}_{-14.6}$	$5.0^{+2.5}_{-2.5}$
$\pi^+ K^-$	$5.6^{+12.2}_{-15.1}$	$-9.8^{+1.2}_{-1.1}$
ΔA_{CP}	$3.8^{+2.9}_{-2.7}$	$14.8^{+2.7}_{-2.8}$

 ΔA_{CP} can be predicted quite precisely

- \Rightarrow could be NP but also large + complex
 - C/T beyond factorization

More robust SM test given by isospin sum rule

A _{CP} [%]	Sum rule	Experiment
$\pi^0 \bar{K}^0$	-0.15 ± 0.04	-0.01 ± 0.10

[Gronau 05]

$$A_{CP}(\pi^+K^-) + A_{CP}(\pi^-\bar{K}^0) \simeq A_{CP}(\pi^0K^-) + A_{CP}(\pi^0\bar{K}^0)$$

 \Rightarrow predicts large $A_{CP}(\pi^0 \bar{K}^0)$, but discrimination of NP requires much more data

Mixing-induced CP asymmetry

Naive expectation neglecting doubly Cabibbo-suppressed terms

 $S_{\pi^0 K_{\rm S}} \simeq \sin(2\beta)_{J/\psi K_{\rm S}} = 0.681 \pm 0.025$

"tree pollution" estimated to increase $S_{\pi^0 K_S}$ by 0.04–0.12

$$S_{\pi^0 K_s} \stackrel{\text{exp}}{=} 0.57 \pm 0.17$$

[Beneke 05: Williamson, Zupan 06]

Isospin relations reveal some tension with πK data

[Fleischer, Jäger, Pirjol, Zupan 08]

uses two SU(3) relations $\Rightarrow R_{T+C}$ and R_{q} SU(3) breaking estimated with QCDF $\Rightarrow S_{\pi^0 K_{\rm S}} = 0.99^{+0.01}_{-0.08} |_{\exp -0.001}^{+0.000} |_{R_{T+C}} |_{C_{\tau}}^{+0.00}_{-0.01} |_{R_{\sigma}}^{+0.00} |_{\gamma}$ uncertainty reducible by lattice determination of $F^{BK}/F^{B\pi}$

Additional information on πK puzzle can be obtained from $\pi K^* / \rho K$ sector

 \Rightarrow at present data still insufficient, but expect sizeable direct CP asymmetries

[Chiang, London 09; Gronau, Pirjol, Zupan 10]

Conclusion

Factorization is based on a twofold expansion in $\alpha_s(m_b)$ and $1/m_b$

- perturbative calculations are reaching NNLO precision
- unfortunately no similar progress (yet) on power corrections

Satisfactory overall description of $\pi\pi/\pi\rho/\rho\rho$ branching ratios

- ▶ large $Br(\pi^0\pi^0)$ still puzzling, but not necessarily a failure of factorization
- $A_{CP}(\pi^+\pi^-)$ from Belle also somewhat large, but $\sim 2\sigma$ above Babar value

The $B \rightarrow \pi K$ puzzle continues to be exciting

• depends crucially on experimental progress on $\pi^0 \bar{K}^0$ observables

There are many interesting topics which I could not discuss

▶ B_s decays, $B \rightarrow VV$ polarization puzzle, B decays with scalars, baryons, 3-body, ...