

Tevatron results on $B \rightarrow \mu\mu$, $B \rightarrow K^*\mu\mu$

Masato Aoki Fermi National Accelerator Laboratory

For the CDF and DØ Collaborations

Flavor Physics and CP Violation 2010 Torino, Italy

- 1. Introduction
- 2. Analysis procedures
- 3. $B \rightarrow K^* \mu^+ \mu^-$
 - 1. Introduction
 - 2. Recent results from CDF
- 4. $B \rightarrow \mu^+ \mu^-$
 - 1. Introduction
 - 2. CDF results
 - 3. DØ results
- 5. Summary

Introduction

Hadron Collider

- Both $B \rightarrow \mu^+\mu^-$ and $B \rightarrow K^*\mu^+\mu^-$ decay via Flavor Changing Neutral Current
 - -Forbidden at tree level in the SM
 - \rightarrow Rare decays
 - -New physics in rare decays when new physics > SM
- <u>Need a lot of B events</u> to probe the decays
- <u>Tevatron also works as a *B*-factory</u> : $\sigma_b \sim 30 \mu b (|y| < 1)$
 - $-\mathbf{B}^+$, \mathbf{B}^0 , \mathbf{B}_s , \mathbf{B}_c , Λ_b , Σ_b , Ξ_b , Ω_b , ??
- Huge backgrounds (more than ×10³)
- High performance B triggers are required

 <u>Muon trigger can be used for these</u> searches

Secondary vertex c/o dimuon (+α)
Multivariate classifier
Remove background
Measurements (Limits)

$B^{0} \rightarrow K^{*0}(K^{+}\pi^{-})\mu^{+}\mu^{-}$ $B^{*} \rightarrow K^{+}\mu^{+}\mu^{-}$ $B_{s} \rightarrow \phi\mu^{+}\mu^{-}$

 $\mathbf{B}^{0} \rightarrow \mathbf{K}^{*0}(\mathbf{K}^{+}\pi^{-})\mu^{+}\mu^{-}$

- Non resonant µµ decays via box or penguin
- BR(B⁰ \rightarrow K^{*0} $\mu^+\mu^-$) ~10⁻⁶
- New physics :
 - -Larger BR
 - -Modify kinematics
 - Dimuon mass spectrum
 - Angular distributions
- Our interests :
 - -BR
 - -A_{FB}: Forward-backward asymmetry
 - -F_L : K^{*0} longitudinal polarization

Forward-Backward Asymmetry :

- Didn't measure A_{FB} due to limited statistics
- All consistent with the SM predictions

g

*PDG BR(B_s \rightarrow J/ $\psi\phi$)=(0.9±0.3)×10⁻³

 $-\operatorname{BR}(B_{s} \rightarrow \phi \mu^{+} \mu^{-}) / \operatorname{BR}(B_{s} \rightarrow J/\psi \phi) < 4.4 \times 10^{-3} \text{ (B} 95 \text{ C.L.}$

- BR(B_s→φµ⁺µ⁻) / BR(B_s→J/ψφ) < 2.6×10⁻³ @95C.L. \therefore 0.45fb⁻¹ (PRD 74:031107,2006)

 $-BR(B^{0} \rightarrow K^{*0}(K^{+}\pi^{-})\mu^{+}\mu^{-}) = (0.81 \pm 0.30 \pm 0.10) \times 10^{-6}$

 $-BR(B^+ \rightarrow K^+ \mu^+ \mu^-) = (0.59 \pm 0.15 \pm 0.04) \times 10^{-6}$

 $B \rightarrow X_s \mu^+ \mu^-$ results in the past

Update since last publication

CDF Note 10047

- Use 4.4fb⁻¹ of data
- Various optimizations:
 - -Improved PID
 - Muon : Likelihood ID
 - Cleaner dimuon candidates
 - Kaon, Pion : Combined log likelihood (TOF & dE/dx)
 - Reduce combinatorial background
 - -Neural Networks for B signal selection
 - Cleaner B signal

Enough signals to measure A_{FB}

- BR(B+ \rightarrow K+ μ + μ -) =(0.38±0.05(stat.) ±0.03(syst.))×10⁻⁶
- BR(B⁰ \rightarrow K^{*0}(K⁺ π^{-}) $\mu^{+}\mu^{-}$) = (1.06±0.14(stat.) ±0.09(syst.))×10⁻⁶
- BR(B_s $\rightarrow \phi \mu^+ \mu^-)$ = (1.44±0.33(stat.) ±0.46(syst.))×10⁻⁶

 \diamond First measurement in the world

 \diamond The rarest B_s decay we have observed so far

- Most precise measurements for single final state!!
- All consistent with the SM predictions and *B*-factories

Allowed region by SM

- $q^2 = m_{\mu\mu}^2 c^2$
- q² distributions could show a hint of new physics

and A_{FB} measurements

• First measurement in hadron collisions

Competitive results with B-factories

SM prediction :

A.J.Buras, hep-ph/0904.4917:

- $BR(B_{s} \rightarrow \mu^{+}\mu^{-}) = (3.6 \pm 0.3) \times 10^{-9}$
- BR(B⁰ \rightarrow µ⁺µ⁻) =(1.1±0.1)×10⁻¹⁰ suppressed by |V_{td}/V_{ts}|²
- Can be enhanced by
 - **MSSM** (BR($B \rightarrow \mu^+ \mu^-$) $\propto \tan^6 \beta$)
 - GUT SO(10)
 - SUSY R-parity violating models
 - Non-minimal flavor violating model
- SM signal is beyond the detectors' sensitivity at Tevatron
 - Current observation of $B \rightarrow \mu^+\mu^-$ would imply new physics

PRL 100,101802(2008)

The best published results (2008)

- Use 2fb⁻¹ of data
- Use Neural Networks (NN)
- Subdivide the signal region into several NN and mass bins
 - \rightarrow 15% improvement

Observed limits@95% C.L. •BR($B^0 \rightarrow \mu\mu$) < 1.8×10⁻⁸ •BR($B_s \rightarrow \mu\mu$) < 5.8×10⁻⁸ (4.9×10⁻⁸ expected)

Updated results using 3.7fb⁻¹

CDF Note 9892

- Same baseline as the published analysis
- More data

Best!

- Added 1.7fb⁻¹

Additional acceptance gain (tracking region) by 12%

Observed limits@95% C.L. •BR($B^0 \rightarrow \mu\mu$) < 7.6×10⁻⁹ (9.1×10⁻⁹ expected) •BR($B_s \rightarrow \mu\mu$) < 4.3×10⁻⁸ (3.3×10⁻⁸ expected)

Last published result : 2007, using 1.3fb⁻¹
 Likelihood ratio to reduce background

PRD 76, 092001(2007)

Complicated bkg parameterization

Preliminary result using 2fb⁻¹

- Start adding RunIIb data
 - Several upgrades (e.g. Layer 0 silicon)
 - High instantaneous luminosity
 - First 1.3fb^{-1} = Run IIa, later=Run IIb
 - Challenge : High luminosity modeling

DØ Note 5344

Preliminary result using 4.8fb⁻¹

• Use Boosted Decision Tree

- DØ Note 5906
- 5 inputs : B_s Isolation, p_T , vertex χ^2 , IP/ σ , L_{xy}/σ
- Subdivide the data into three samples based on trigger/luminosity configuration
- Box still remained blinded

"Expected" limit @95%C.L
•BR(
$$B_s \rightarrow \mu\mu$$
) < 5.3×10⁻⁸

- •Further studies on going
 - Understanding background
 - Increasing acceptance
 - Finding new and better discriminants
 - Then, we will open the box

>uu projections

Upper Limits on BR(B $\rightarrow \mu^+\mu^-$) at 95% C.L. at Tevatron

Projection : a simple luminosity projection from the recent expected limit assuming no signal

New result using 6.1fb⁻¹

- Just approved!
- Run IIa 1.3fb⁻¹ + Run IIb 4.8fb⁻¹
- A lot of improvements:
 - -Acceptance gain :
 - Muon ID : ~10%
 - Trigger : ~16%
 - -Bayesian Neural Networks
 - -Better understanding of BNN input variables
 - -Background modeling from MC and data sidebands
 - -Subdivide the signal region into several BNN and mass bins
- The blinded signal box has been opened

Preliminary result using 6.1fb⁻¹

$B_s \rightarrow \mu\mu$ projections

Upper Limits on BR(B $\rightarrow \mu^+\mu^-$) at 95% C.L. at Tevatron

• New results on FCNC decays at Tevatron

- $B \rightarrow K^* \mu \mu$
 - CDF results using 4.4 fb⁻¹
 - First measurement of A_{FB} at Tevatron
 - First observation $B_s \rightarrow \phi \mu \mu$
- $B \rightarrow \mu \mu$:
 - CDF results using 3.7 fb⁻¹
 - $-BR(B_s \rightarrow \mu\mu) < 4.3 \times 10^{-8}, BR(B^0 \rightarrow \mu\mu) < 7.6 \times 10^{-9}$
 - World best results
 - DØ result using 6.1 fb⁻¹

 $-BR(B_s \rightarrow \mu\mu) < 5.2 \times 10^{-8}$

- Still no evidence for new physics
- Wait! We have more data in hand now
 - More than 7 fb^{-1} recorded on tape as of today
 - More exciting results coming soon! Stay tuned!

Belle

BaBar

6 inputs to BNN

- Plots only for RunIIb are shown here
- RunIIa distributions are similar to RunIIb

Run IIa dimuon mass distributions in the highest four BNN bins

FIG. 12: Distributions of dimuon mass for data (dots with error bars), expected background distribution (solid line) and the SM signal distribution multiplied by a factor of 10 (dashed line) in the highest four BNN bins in Run IIa: (a) $0.96 \le BNN \le 0.97$, (b) $0.97 \le BNN \le 0.98$, (c) $0.98 \le BNN \le 0.99$, (d) $0.99 \le BNN \le 1.00$.

Run IIb dimuon mass distributions in the highest four BNN bins

FIG. 13: Distributions of dimuon mass for data (dots with error bars), expected background distribution (solid line) and the SM signal distribution multiplied by a factor of ten (dashed line) in the highest four BNN bins in Run IIb: (a) $0.980 \le BNN \le 0.985$, (b) $0.985 \le BNN \le 0.990$, (c) $0.990 \le BNN \le 0.995$, (d) $0.995 \le BNN \le 1.000$.

$\mathbf{B}_{s} \rightarrow \mu \mu$ projections

Upper Limits on BR(B $\rightarrow \mu^+\mu^-$) at 95% C.L. at Tevatron

Systematics on the single event sentsitivity

TABLE I: Sources of uncertainty and their contributions to the relative uncertainty (%) in the single event sensitivity.

Source	Run IIa	$\operatorname{Run} {\rm I\!Ib}$
$N(B^+)$ stat.	4.6	2.7
$N(B^+)$ syst.	1.5	0.7
Kaon reconstruction	1.7	8.5
Trigger	0.5	0.9
$B_s^0 \ p_T \ { m spectrum}$	6.4	6.6
B^+ MC stat.	0.9	1.1
B_s^0 MC stat.	0.6	0.6
$\mathcal{B}\left(B^+ \to J/\psi\left(\mu^+\mu^-\right)K^+\right)$	3.4	3.4
f_u/f_s	15.2	15.2
Total	17.6	19.2

Data in the signal region

New results on FCNC decays at Tevatron

- $B \rightarrow K^* \mu \mu$
 - CDF results using 4.4 fb⁻¹
 - First measurement of A_{FB} at Tevatron
 - First observation $B_s \rightarrow \phi \mu \mu$
- B→μμ
 - CDF results using 3.7 fb⁻¹
 - $-BR(B_s \rightarrow \mu\mu) < 4.3 \times 10^{-8}, BR(B^0 \rightarrow \mu\mu) < 7.6 \times 10^{-9}$
 - World best results
 - DØ result using 4.8 fb⁻¹
 - $-BR(B_s \rightarrow \mu\mu) < 5.3 \times 10^{-8}$ (*expected limit)
- Wait! We have more data in hand now
 - More than 7 fb^{-1} recorded on tape as of today
 - More exciting results coming soon! Stay tuned!

The Tevatron Collider

- Proton-antiproton collider
- Run II with $\sqrt{s}=1.96$ TeV
- Collisions every 396 ns

The CDF & DØ detector

CDF and DØ : General purpose detector

η = 2

η = 3

CP violation in B_s mixing from heavy Higgs exchange

Bogdan A. Dobrescu, Patrick J. Fox and Adam Martin Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois, USA (Dated: May 22, 2010)

The anomalous dimuon charge asymmetry reported by the D0 Collaboration may be due to the tree-level exchange of some spin-0 particles which mediate CP violation in $B_s - \bar{B}_s$ meson mixing. We show that for a range of couplings and masses, the heavy neutral states in a two Higgs doublet model can generate a large charge asymmetry. This range is natural in "uplifted supersymmetry", and may enhance the $B^- \rightarrow \tau \nu$ and $B_s \rightarrow \mu^+ \mu^-$ decay rates. However, we point out that on general grounds the reported central value of the charge asymmetry requires new physics not only in $B_s - \bar{B}_s$ mixing but also in $\Delta B = 1$ transitions or in $B_d - \bar{B}_d$ mixing.

arXiv:1005.4238 [hep-ph]

• E821 at BNL : anomalous magnetic moment of the muon (Phys.Rev.D73:072003,2006)

 $- \alpha_{u}^{exp} - \alpha_{u}^{SM} \cong (3\pm 1) \times 10^{-9}$

- → CMSSM model (JHEP 0502 (2005) 013) suggests 250 GeV < gaugino mass $(m_{1/2})$ < 650 GeV →BR $(B_s \rightarrow \mu\mu)$: 5×10⁻⁹ ~ 1×10⁻⁷
 - \rightarrow Reachable at Tevatron

JHEP 0708(2007)083

Constraint on $m_{1/2}$ from \longrightarrow $B_s \rightarrow \mu\mu$

 χ^2 combining results of LEP2, $(g-2)_{\mu}, b \rightarrow s\gamma,$ $B_s \rightarrow \mu\mu, B \rightarrow \tau\nu$

- Nucl. Phys. B760 (2006) 38-63
- MSSM+ v_R with large tan β

 Important information for lepton flavour violating Higgs decays

PRD 80:095005,2009
 SU(5)

PRD 80:095005,2009 SO(10)

• Phys.Rev.D74:075003,2006

MSSM and $B_s \rightarrow \mu\mu$

• Phys.Rev.D74:075003,2006

