Lepton flavor violation in $\mu^+ \rightarrow e^+\gamma$ decay: results from the MEG experiment

Cecilia Voena

INFN Roma

on behalf of the MEG collaboration

FPCP 2010 Torino 25-29 May 2010

Outline

- History of μ^+ ->e⁺ γ searches
- Physics motivation
- Experimental technique
- The MEG detector and performances
- Analysis of 2008 data
- Prospects for 2009 and beyond

μ ->e γ : a long search

MEGA experiment (2001) present limit 1.2*10⁻¹¹@90%C.L.

MEG goal: improve sensitivity by two orders of magnitude => 10⁻¹³ (2011)

Improvements linked with better beams and detector resolutions

μ ->e γ and New Physics searches

 Standard Model (SM) with v mass and oscillation:

Charged LVF very small

$$BR(\mu \rightarrow e\gamma)\Big|_{SM} \propto \frac{m_v^4}{m_W^4} \approx 10^{-54}$$

• Beyond Standard Model e.g

Charged LVF can be largely enhanced, in some models just below the experimental limit (<1.2·10⁻¹¹ @90%C.L. MEGA)

Observation of $\mu \rightarrow e\gamma$ is Physics beyond SM (no SM background)

Some Examples

 $BR(\mu \to e \; \gamma) \cdot 10^{11}$

 SUSY GUT SO(10) with see-saw

CKM-like

Neutrino-matrix like (PMNS)

Calibbi et al., Phys.Rev.D74 (2006) 116002

• Muon g-2

Connection with g_{μ} -2, predicts signal in MEG accessible region Isidori *et al.*, Phys.Rev.D75 (2007) 115019

The MEG experiment @PSI

The Paul Scherrer Institute

Switzerland

GERMAN

6

The MEG collaboration: 69 physicists from

	INFN&U. Genova INFN&U.Lecce	-46° N Great S	Ca Lenda B. et n 25 Va Sione Siere Lockman Belinzona Addo Martigor Deverspitze Lockman Fibelinzona Addo Martigor Deverspitze Lockman Fibelinzona Addo Hartigor Lockman Fibelinzona Addo Ha
Tokyo U. Waseda U. KEK	INFN&U.Pavia INFN&U.Pisa INFN&U.Roma UC Irvine	PSI	JINR Dubna BINP Novosibirsk

The signal..

High intensity muon source@ PSI: I_µ≈3·10⁷ µ/sec stopped in a polyethylene target

$$N_{sig} \propto I_{\mu} \cdot BR(\mu \rightarrow e\gamma)$$

- E_γ ≈ E_{e+} = 52.8 MeV
- Back-to-back: $\theta_{e\gamma}$ =180°
- Simultaneous production: $T_{ev}=0$

The accidental background is dominant:

 e^+ from Michel μ decay and a γ (from radiative decay or bremsstrahlung or annihilation in flight) so close in time that they cannot be distinguished

Detector resolutions are critical

The MEG detector

Dedicated detector with non-symmetric coverage

COBRA (COnstant Bending RAdius) magnet

Gradient field solenoid:

- High p_T track swept away
 => Can work at high rate
- Bending radius independent of emission angle
- 0.2X₀ in front of calorimeter

Distance along axis(m)

The Drift Chambers

- 16 chambers radially aligned in He:Ethane (50:50)
- 2 staggered arrays of drift cells
- Low mass: 2 × 10⁻³X₀ along positron trajectory

1 signal wire (radius from drift time) and 2x2 Vernier cathode strips (z position)

The Timing Counters

 Two sectors: upstream and downstream

15x2 scintillating bars read by PMTs

Measure e+ time of impact
Used in trigger (time coincidence with γ and positron direction)

256x2 scintillating fibers read by APD

- measure z coordinate
- eventually in the trigger

The Photon calorimeter

- Largest liquid Xenon calorimeter in the world: (900 I)
- Fast response
 - τ_{scint} = 4.2 ns, 22ns, 45ns
- High light yield (~100%Nal)
- Scintillation light read by 846 PMTs digitized@ 1.6GHz with custom DRS chip (allowing pile-up identification)
- Crucial to maintain Xenon purity (purification)

 $\sigma(T_{\gamma}) = 45 \, ps$

Calibrations

 Redundant calibration procedures and constant monitoring of the detector, in particular for photon detector

A μ^+ > e⁺ γ like event

2008 Data-taking

12/Sep-16/Dec 2008: MEG Physics Run (11.5 weeks beamtime)

We also took radiative decay (RD) data once/week at reduced beam intensity

2008 performances: tracking

DC HV instabilities affected tracking efficiency and resolution. The problem was due to He penetration in HV distribution board: solved in 2009 run!

2008 performances: y energy and efficiency

Detection efficiency

(normalized to fiducial volume) from MC confirmed in π^0 data and radiative decay data

ε_v=0.63±0.04

Conversion point

from MC and data taken with a lead collimator

~5/6 mm along orthogonal front face sides/depth direction

2008 performances: timing

Relative γ -e⁺ timing

from radiative decays taken at normal beam intensity

Timing counter intrinsic resolution from e⁺ hitting two consecutive bars

Analysis strategy

- Blind-box likelihood analysis strategy
- Blinding variables: E_{γ} and $T_{e\gamma}$
- Observables: $E_{e+,}E_{\gamma}, \theta_{e\gamma}, T_{e\gamma}$

Likelihood analysis

 The likelihood function is built in terms of signal, radiative decay and accidental backgrounds and their probability density functions:

Normalization

Number of muons from the detected Michel decays, N_{evv} independent of istantaneous beam rate and of acceptance and efficiency

$$\mathrm{BR}(\mu^+ \to \mathrm{e}^+ \gamma) = \frac{N_{\mathrm{sig}}}{N_{e\nu\bar{\nu}}} \times \frac{f^E_{e\nu\bar{\nu}}}{P} \times \frac{\epsilon^{trig}_{e\nu\bar{\nu}}}{\epsilon^{trig}_{e\gamma}} \times \frac{A^{TC}_{e\nu\bar{\nu}}}{A^{TC}_{e\gamma}} \times \frac{\epsilon^{DC}_{e\nu\bar{\nu}}}{\epsilon^{DC}_{e\gamma}} \times \frac{1}{A^{LXe}_{e\gamma}} \times \frac{1}{\epsilon^{LXe}_{e\gamma}} \times \frac{1}{\epsilon^{LXe}_{e\gamma}}$$

Systematic error included

Signal region fit

Summary and perspectives

- First Physics MEG run gave comparable result with previous limit despite Drift Chambers HV instabilities
- Second run in 2009:
- DC HV problem solved =>
 DC fully efficient
- Improved electronics
- Other improvements in efficiencies and resolutions

- Sensitivity expected at ~5x10⁻¹² for 2009 run, (target: summer conferences)
- Target sensitivity @end of 2011 run: O(10⁻¹³)

Backup

Beam-line

Intensity' (µ-stop/s)

- Low 2.5 x 10⁶
- Normal 3.2 x 10⁷
- High 8.6 x 10⁷

characteristics

- P = 27.7 MeV/c
- ΔP = 0.3 MeV/c
- σ_x = 9.5 mm
- σ_Y = 10. mm

Past, present and future performances

	2008	2009 (preliminary)	"Goal"
Gamma Energy (%)	2.0(w>2cm)	4	1.2
Gamma Timing (psec)	80	>67	43
Gamma Position (mm)	5(u,v)/6(w)	←	3.8(u,v)/5.9(w)
Gamma Efficiency (%)	63	←	60
e+ Timing (psec)	<125	←	50
e+ Momentum (%)	1.6	0.85	0.3-0.38(100%)
e+ Angle (mrad)	$10(\phi)/18(\theta)$	$8(\phi)/11(\theta)$	3.8-5.1
e+ Efficiency (%)	14	40	90
e+-gamma timing (psec)	148	<180	64
Muon Decay Point (mm)	3.2(R)/4.5(Z)	2.2(R)/3.1(Z)	0.9-1.1
Trigger efficiency (%)	66	88	100
Stopping Muon Rate (sec-1)	3×10 ⁷ (300µm)	2.9×10 ⁷ (300µm)	3×107
DAQ time/Real time (days)	48/78	35/43	300/-

Table of resolutions

Exp./Lab	Year	ΔEe/Ee (%)	ΔΕγ /Εγ (%)	∆teγ (ns)	Δθeγ (mrad)	Stop rate (s⁻¹)	Duty cyc.(%)	BR (90% CL)
SIN	1977	8.7	9.3	1.4	-	5 x 10⁵	100	3.6 x 10 ⁻⁹
TRIUMF	1977	10	8.7	6.7	-	2 x 10 ⁵	100	1 x 10 ⁻⁹
LANL	1979	8.8	8	1.9	37	2.4 x 10⁵	6.4	1.7 x 10 ⁻¹⁰
Crystal Box	1986	8	8	1.3	87	4 x 10⁵	(69)	4.9 x 10 ⁻¹¹
MEGA	1999	1.2	4.5	1.6	17	2.5 x 10 ⁸	(67)	1.2 x 10 ⁻¹¹
MEG	2008 - x	1	4.5	0.15	19	3 x 10 ⁷	100	2 x 10 ⁻¹³

 $B_{\text{prompt}} \approx 0.1 \times B_{\text{acc}}$ at $3x10^7 \,\mu\text{-stop/s}$

 $B_{\rm acc}\approx R_{\mu}\Delta E_e\Delta E_{\gamma}^2\Delta\theta^2\Delta t$

Trigger and DAQ

Trigger: 100 MHz waveform digitizer on VME boards that uses:

- -γenergy
- $e^+\gamma$ time coincidence
- $e^+\gamma$ collinearity

Readout electronics:

- 2GHZ Waveform digitization for all channels:
- DRS chip (domino ring sampling ring)
- Custom chip designed at PSI
- Upgraded version 4 used 2009 run)

MEG 2008 Run

Running conditions MEG run period

- Live time ~50% of total time
- Total time ~ 7x10⁶ s
- μ stop rate: $3x10^7 \mu/s$
- Trigger rate 6.5 ev/s ; 9 MB/s

The missing 50% is composed of:

- 17% DAQ dead time
- 14% programmed beam shutdowns
- 7% low intensity Radiative muon decay runs (RMD)
- 11% calibrations
- 2% unforeseen beam stops

Normalization

PDFs

Other LFV processes

Process	Present bound	Future sensitivity	
μ⊸еγ	1.2x10 ⁻¹¹	O(10 ⁻¹³ -10 ⁻¹⁴)	MEG
µ→eee	1.0x10 ⁻¹²	-	
µ→e in Ti	4.3x10 ⁻¹²	O(10 ⁻¹⁸)*	PRISM/PRIME
µ→e in Au	7x10 ⁻¹³	-	
µ→e in Al	-	O(10 ⁻¹⁶)*	COMET/Mu2e
τ→μγ	4.4x10 ⁻⁸	O(10 ⁻⁸ ,10 ⁻⁹)*	SuperKEKB,
τ→eγ	3.3x10 ⁻⁸	O(10 ⁻⁸ -10 ⁻⁹)*	SuperB
τ→μμμ	3.2x10 ⁻⁸	O(10 ⁻⁸ ,10 ⁻⁹)*	
τ →eee	3.6x10 ⁻⁸	O(10 ⁻⁸ ,10 ⁻⁹)*	

* = proposed future experiment

Complementarity between different searches in constraining New Physics models