



#### The Quest for $K \rightarrow \pi v v$

Monica Tecchio University of Michigan





FPCP 2010 Torino, May 29<sup>th</sup>, 2010





## The Prologue



The two rare kaon decays,  $K_L \rightarrow \pi^0 v v \& K^+ \rightarrow \pi^+ v v$ , are FCNC processes, forbidden at tree level and dominated by one loop diagrams



- They involve  $\Im(G_{F}^{2})$  loops (W boxes and Z penguins) which can be predicted very precisely (2-5% level) in perturbation theory
- Relevant hadronic operator can be calculated from  $K^+ \rightarrow \pi^0 ev$



May 29, 2010

Monica Tecchio



### The Prologue



- Theoretical calculations gives:  $\begin{array}{l} \mathsf{BR}(\mathsf{K}^+ \rightarrow \pi^+ \nu \nu) = (8.2 \pm 0.8) \times 10^{-11} \\ \mathsf{BR}(\mathsf{K}_{\mathsf{L}} \rightarrow \pi^0 \nu \nu) = (2.8 \pm 0.4) \times 10^{-11} \\ \end{array}$ where the uncertainty is mostly parametric
- Isospin symmetry (Grossman-Nir limit) : BR(K<sub>L</sub>→π<sup>0</sup>νν) ≤ τ<sub>KL</sub>/τ<sub>K+</sub> BR(K<sup>+</sup>→π<sup>+</sup>νν)
- Very sensitive to New Physics
- Directly related to CKM unitarity triangle:







## The Charged Quest



4

- BR(K<sup>+</sup> $\rightarrow \pi^{+}\nu\nu$ ) ~ 80 × 10<sup>-12</sup>
- 3-body decay, only 1 visible, π<sup>+</sup>, a common K<sup>+</sup> decay product
- Need particle ID for beam and daughter particles
- Backgrounds:
  - K<sup>+</sup>→μ<sup>+</sup>ν(γ)
  - $K^+ \rightarrow \pi^+ \pi^0$
  - $K_L \rightarrow \pi^+ \ell^- \nu$ ,  $\ell^-$  missed
  - Beam related backgrounds (can be different for kaon decay at rest vs kaon decay in flight)



Monica Tecchio







- $B(K_L \rightarrow \pi^0 vv) \sim 30 \times 10^{-12}$
- Kinematic signature "nothing going into nothing"
- $K_L$  decays with  $\pi^0$  up to  $10^{10}$  times larger than signal
- Veto inefficiency on extra particles, both charged particles and photons, must be ≤10<sup>-4</sup>
- Huge flux of neutrons in beam
  - can make π<sup>0</sup> off residual gas requires high vacuum
  - halo must be tiny
  - hermeticity requires photon veto for beam

| K <sub>L</sub> Decay                | BR                    |
|-------------------------------------|-----------------------|
| $\pi^{\pm}e^{\mp}\nu_{e}$           | $3.88 \times 10^{-1}$ |
| $\pi^{\pm}\mu^{\mp}\nu_{\mu}$       | $2.72 \times 10^{-1}$ |
| $\pi^0\pi^0\pi^0$                   | $2.10 \times 10^{-1}$ |
| $\pi^+\pi^-\pi^0$                   | $1.26 \times 10^{-1}$ |
| $\pi^{\pm}e^{\mp}\nu_e\gamma$       | $3.53 \times 10^{-3}$ |
| $\pi^+\pi^-$                        | $2.09 \times 10^{-3}$ |
| $\pi^0\pi^0$                        | $9.32 \times 10^{-4}$ |
| $\gamma\gamma$                      | $5.90 \times 10^{-4}$ |
| $\pi^{\pm}\mu^{\mp}\nu_{\mu}\gamma$ | $5.70 \times 10^{-4}$ |
| $\pi^0 \pi^{\pm} e^{\mp} \nu$       | $5.18 \times 10^{-5}$ |
| $\pi^+\pi^-\gamma$                  | $4.39 \times 10^{-5}$ |











May 29, 2

- K<sup>+</sup>→π<sup>+</sup>νν
  - E787/E949 at BNL
  - NA62 at CERN
- $K_L \rightarrow \pi^0 \nu \nu$ 
  - E391a at KEK
  - KOTO at JPARC
- P993 at Fermilab
- Project X at Fermilab

Monica Tecchio







7

- 1 ~700 MeV/c K<sup>+</sup> stopped in target, decays at rest
- 2 Identify and measure  $\pi^+ \rightarrow \mu^+ \rightarrow e^+$
- 3 Veto on any other activity



- Search in two regions: PNN1 and PNN2 (above/below π<sup>+</sup>π<sup>0</sup> peak)
- Combined result:

BR(K<sup>+</sup> $\rightarrow \pi^+ \nu \nu$ ) = (17.3 <sup>+11.5</sup> <sub>-10.5</sub>) × 10<sup>-11</sup>

with a probability of 0.001 for all 7 events to be due to background and 0.07 to be due to SM.

![](_page_6_Figure_11.jpeg)

![](_page_7_Picture_0.jpeg)

![](_page_7_Picture_2.jpeg)

- New approach to  $K^{\scriptscriptstyle +}{\rightarrow}\pi^{\scriptscriptstyle +}\nu\nu$  detection: use high momentum  $K^{\scriptscriptstyle +}$  decay in flight
- Improves on E787/E949 sensitivity by avoiding background from source scattering and requiring low momentum  $\pi$ + (below 2-body decay kinematic threshold)
- More on next talk

![](_page_7_Figure_6.jpeg)

![](_page_8_Picture_0.jpeg)

![](_page_8_Picture_2.jpeg)

- First dedicated  $K_L \rightarrow \pi^0 v v$  experiment looking for two photons and some missing momentum  $P_T$
- Use 12 GeV proton beam at KEK-PS
- Three runs between Feb. 2004 and Dec. 2005

![](_page_8_Figure_6.jpeg)

![](_page_9_Picture_0.jpeg)

 Clean K<sub>L</sub> beam (off-axis beam line with photon absorber, sweeping magnet and long decay line)

![](_page_9_Figure_2.jpeg)

![](_page_10_Picture_0.jpeg)

 Clean K<sub>L</sub> beam (off-axis beam line with photon absorber, sweeping magnet and long decay line)

![](_page_10_Figure_2.jpeg)

![](_page_11_Picture_0.jpeg)

![](_page_11_Picture_2.jpeg)

- Clean K<sub>L</sub> beam (off-axis beam line with photon absorber, sweeping magnet and long decay line)
- Pencil size beam (highly shaped collimators to minimize halo particles generated by scattering off the collimator surface)

![](_page_11_Figure_5.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_2.jpeg)

- Clean K<sub>L</sub> beam (off-axis beam line with photon absorber, sweeping magnet and long decay line)
- Pencil size beam (highly shaped collimators to minimize halo particles generated by scattering off the collimator surface)
- High acceptance detector for photons, highly segmented to reconstructed separate clusters

![](_page_12_Figure_6.jpeg)

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_2.jpeg)

- Clean K<sub>L</sub> beam (off-axis beam line with photon absorber, sweeping magnet and long decay line)
- Pencil size beam (highly shaped collimators to minimize halo particles generated by scattering off the collimator surface)
- High acceptance detector for photons, highly segmented to reconstructed separate clusters
- Hermetic veto for photon and charged particles

![](_page_13_Figure_7.jpeg)

![](_page_14_Picture_0.jpeg)

#### What does it take to catch a $K_L \rightarrow \pi^0 v v$ ?

![](_page_14_Picture_2.jpeg)

- Fully reconstruct  $\pi^0$  and  $K_L$ 
  - constrain 2 $\gamma$  system to  $\pi^0$  mass, get the two photon opening angle  $\theta$
  - assuming K\_ decay vertex on beam line, determine  $Z_{\text{vtx}}$  of  $\pi^0$  decay

![](_page_14_Figure_6.jpeg)

$$m_{\pi}^2 = (p_{\gamma_1} + p_{\gamma_2})^2 = 2 E_1 E_2 \times (1 - \cos \theta)$$
  
 $r_{12}^2 = d_1^2 + d_2^2 - 2 d_1 d_2 \cos \theta$ 

![](_page_15_Picture_0.jpeg)

#### What does it take to catch a $K_L \rightarrow \pi^0 \nu \nu$ ?

![](_page_15_Picture_2.jpeg)

- Fully reconstruct  $\pi^0$  and  $K_L$ 
  - constrain 2 $\gamma$  system to  $\pi^0$  mass, get the two photon opening angle  $\theta$
  - assuming K<sub>L</sub> decay vertex on beam line, determine  $Z_{vtx}$  of  $\pi^0$  decay
- Define signal box in  $\pi^0 P_T$ - $Z_{vtx}$  space using:
  - fiduciality cuts for Z<sub>vtx</sub>
  - $P_T$  above  $K_{\pi3}$  threshold and below (V-A) maximum of 231 MeV/c
- No events observed BR( $K_L \rightarrow \pi^0 vv$ ) < 6.7 x 10<sup>-8</sup> (@ 90% CL)

![](_page_15_Figure_11.jpeg)

![](_page_15_Figure_12.jpeg)

May 29, 2010

# 4

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

17

- KOTO (K<sup>0</sup> at Tokai) uses E391a concept and aims at SM sensitivity
- New 30 GeV proton beam at JPARC
- New 16° beamline (lower n momentum below  $\eta$  production threshold)
- Improved calorimeter (KTev CsI)
- New beam hole photon veto
- Improved readout and trigger
- Single Event Sensitivity: 9x10<sup>-12</sup>

![](_page_16_Figure_10.jpeg)

![](_page_16_Figure_11.jpeg)

May 29, 2010

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_2.jpeg)

- Beam Survey in Fall '09/Winter '10
- Measure beam shape and halo/core neutron ratio
- Measure K<sub>L</sub> yield
- Good agreement with MC prediction

![](_page_17_Figure_7.jpeg)

![](_page_17_Figure_8.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_2.jpeg)

Beam Test wit 144 (12×12) CsI crystals:

- Calibration of analog PMT readout
- Calibration of analog PMT readout  $\underbrace{\mathfrak{L}}_{3.}^{3.}$ Verification digital frontend/trigger electronics  $\overset{\mathfrak{L}}{\mathfrak{b}^+}$
- Study of time and energy resolution, shower containment

![](_page_18_Figure_7.jpeg)

![](_page_18_Figure_8.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

- Fall 2010: partial engineering run for calorimeter (3000 ch. or 75% of readout)
- Fall 2011: commission vetos and first physics run
- Summer 2012: Grossman-Nir limit ( BR(K<sub>L</sub>→π<sup>0</sup>vv) < 1.5 × 10<sup>-9</sup> ) with 30 KW for 1 month
- SM limit for KOTO Step 1 with 300 KW
- 100 events for KOTO Step 2

![](_page_19_Figure_8.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_2.jpeg)

(see David Jaffe's poster)

Measure of BR(K<sup>+</sup> $\rightarrow \pi^+\nu\nu$ ) using E787/E949 concept (stopped kaon in target, hermetic tracking chamber + range stack to completely identify decay products)

- Use 150 GeV MI beam (10% of available current) + Tevatron as a stretcher  $\rightarrow$  95% d.f.
- New K<sup>+</sup> beam at P=550 MeV/c
- New modern detector with 10 times the E787/E949 acceptance
- Extrapolating E787/E949 backgrounds and sensitivity: • 194 ± 85 evts/year
- Use existing experimental hall (BO) and CDF magnet May 29, 2010 Monica Tecchio

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_2.jpeg)

- Project X is a proposed high intensity proton facility at Fermilab with 8 GeV Continuous Wave linac plus Recycler plus Main Injector for simulataneous running of:
  - >2 MW proton beam for neutrino beam for long baseline neutrino oscillation experiments
  - 100-200 KW proton beam for kaon and muon precision experiments

![](_page_21_Picture_6.jpeg)

• Physics proposal for ~10<sup>3</sup> evts charged and neutral K $\rightarrow \pi v v$  experiments with low-loss beam slow extraction technique providing 20-160 MHz spills with bunched beam (50 ps pulses) and high duty factor.

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_2.jpeg)

- The quest for  $K_L \rightarrow \pi^0 v v \& K^+ \rightarrow \pi^+ v v$  measurement at SM level is well under way.
- Immediate or long-term future experiments are being worked on/proposed.
- Rare and precise prediction 
  → Extremely sensitive
  to new physics.
- The physics potential of this holy grail of flavor physics and CP violation is huge and worth pursuing!

![](_page_22_Picture_7.jpeg)