

The Upgrade of the LHCb Detector

Frédéric Machefert On behalf of the LHCb collaboration

CNRS/IN2P3 Laboratoire de l'Accélérateur Linéaire France

LHCb/CERN

LHCb

- LHCb is a collaboration of more than 700 people from 54 institutes of 15 countries
- LHCb is the dedicated B physics experiment at LHC devoted to precision measurement in CP violation and rare decays
- LHCb seeks to find the evidence of new particles via their interferences in b and c quarks decays
- b/anti-b production at LHC is very large especially in the forward region of the interaction points
- LHCb is a single-arm forward spectrometer
 - 1.9<η<4.9
 - $\sigma_{b\bar{b}} \sim 230 \ \mu b$ in detector coverage
 - Production of B^0 , $B^{+/-}$, B_s , B_c , b-baryons
 - B's have a large momentum
 - Hadrons with both b and \overline{b} in the acceptance
 - Large displaced vertices
- Present "nominal" luminosity is 2x10³²cm⁻².s⁻¹
 - At L=10³³cm⁻².s⁻¹, 5x10¹² B-hadrons produced per year (10⁷s)

The LHCb Detector

Introduction

- The present picture we have is very consistent with the Standard model
 - Still there many unanswered questions \rightarrow New physics
- We may expect that NP will be seen at LHC
 - The first run (5/6 fb⁻¹, until 2015) could already give some hints
 - This is especially true in the heavy flavour sector (LHCb)
- If there are hints of NP after 5/6 fb⁻¹
 - Physics sensitivity is not sufficient to distinguish between different models
- Present operation of LHCb is very satisfactory
 - See the talk from Franz Muheim on Tuesday
- Upgrade done in 2 phases matching the LHC schedule
- Goal of first phase
 - Improve the trigger efficiency on b hadron (factor 2)
 - To accumulate 10 times more statistics (>50fb⁻¹)
 - Be flexible to be ready for the exploration of NP if found

CP asymmetry in $B_s \rightarrow J/\psi \Phi$

- $B_s \rightarrow J/\psi \Phi$ measures the B_s mixing phase -2 β_s as $B \rightarrow J/\psi K_s$ provides the CPV phase 2 β
- $B_s \rightarrow J/\psi \Phi$ is a vector-vector final state
 - Angular analysis required
 - $\Delta\Gamma_{s}/\Gamma_{s}$ is a parameter of the fit
- LHCb should get 655k events in 10fb⁻¹
 - Projected errors
 - 2β_s~ +/- 0.010
 - ΔΓ_s/Γ_s ~ 0.005
- With 100fb⁻¹ errors on 2β_s is reduced to +/-0.004 (Extrapolation – Stat. errors only)
 - May imagine to distinguish among several supersymmetry models

$B \rightarrow s$ penguins

 $B_{c} \rightarrow \Phi \Phi$ is similar to $B \rightarrow \Phi K^{0}_{c}$

- Decay is dominated by penguins → very sensitive to NP
- SM predicts the decay phase cancels the mixing phase \rightarrow this should be a "null measurement"
- $B_s \rightarrow \Phi \Phi$ is a vector-vector state
 - angular analysis is more difficult
- Estimated error in CP violating asymmetry
 - $B \rightarrow \Phi K_{s}^{0}$ for 100 fb⁻¹, +/-0.019-0.045 (20000 events)
 - $B_s \rightarrow \Phi \Phi$ for 100 fb⁻¹, +/-0.017 (0.6M events) (Extrapolation – Stat. errors only)

	$\sin(2\beta^{eff})$	$\equiv \sin(2\phi_1^{el})$	^{ff}) HFAG FPCP 2009 PRELIMINARY
b→ccs	World Average		0.67 ± 0.02
φ	Average	⊢★ →	0.44 +0.17
η′ Κ⁰	Average	+ * +	0.59 ± 0.07
K _s K _s K _s	Average	+ *	→ 0.74 ± 0.17
$\pi^0 K^0$	Average	⊢★	0.57 ± 0.17
ρ ^ο K _S	Average	⊢ ★ − 1	0.54 +0.18
ωK _s	Average	+ +	0.45 ± 0.24
$f_0 K_S$	Average	⊢★ -1	0.60 +0.11 -0.13
$f_2 K_S$	Average	*	0.48 ± 0.53
$f_X K_S$	Average	*	0.20 ± 0.53
$\pi^0 \pi^0 K_S$	Aver age ★		-0.52 ± 0.41
$\phi \pi^0 K_S$	Average		0.97 +0.03 -0.52
$\pi^+ \pi^- K_S$	NAverage	+	0.01 ± 0.33
K ⁺ K ⁻ K ⁰	Average	H	H 0.82 ± 0.07
-1.6 -1.4 -	1.2 -1 -0.8 -0.6 -0.4 -0.2	0 0.2 0.4 0.6 0.8	3 1 1.2 1.4 1.6

Not yet a clear picture Precision is needed

$B_s \rightarrow \mu \mu (I)$

- Standard model prediction for BR is precise and small
 - Br(B_s $\rightarrow \mu\mu$)= (3.35+/-0.32)x10⁻⁹

Blanke et al. JHEP 0610:003, 2006

- But BR is very sensitive NP
 - example of MSSM \rightarrow goes as tan⁶ β

- SM Br will be reached with 10 fb⁻¹
- Br may be measured sooner if NP enhancement
- But certain models may also lead to BR suppression depending on phases
- Rate of $(B_d/B_s \rightarrow \mu\mu)$ is tightly constrained (distinction of SM and MFV) Buras: hep-ph/060450
- Can we hope to see $B_d \rightarrow \mu\mu$ at the upgraded LHCb ?

$\mathsf{B} \to \mathsf{K}^{0^{\star}} \mathsf{I}^{\scriptscriptstyle +} \mathsf{I}^{\scriptscriptstyle -}$

6

5

4

3

2

- Observable : forward-backward asymmetry of the angle between lepton and B in the di-lepton rest frame
- Position of zero asymmetry crossing point will be measured by LHCb
- LHCb measures 0 to +/-0.22 GeV² in 10 fb⁻¹
- Other clean theoretical observables can only be extracted with more than 10fb⁻¹
 - Transverse polarization functions

$$A_T^{(2)} = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}, \qquad \qquad A_T^{(3)} = \frac{|A_{0L}A_{\parallel L}^* - A_{0R}^*A_{\parallel R}|}{\sqrt{|A_0|^2|A_{\perp}|^2}}, \\ A_T^{(4)} = \frac{|A_{0L}A_{\perp L}^* - A_{0R}^*A_{\perp R}|}{|A_{0L}^*A_{\parallel L} + A_{0R}A_{\parallel R}^*|},$$

0.35 M yield at upgrade 100fb⁻¹

SM predicts no right-handed currents

$$\begin{split} &\tan\psi \equiv \left| \frac{\mathcal{A}\left(\bar{B}_{(s)} \to \Phi^{\mathcal{CP}} \gamma_{R}\right)}{\mathcal{A}\left(\bar{B}_{(s)} \to \Phi^{\mathcal{CP}} \gamma_{L}\right)} \right| \quad \text{is null} \\ &\Gamma_{B_{s}^{0} \to \Phi^{\mathcal{CP}} \gamma}\left(t\right) \quad \approx \quad |A|^{2} \, \mathrm{e}^{-\Gamma_{s} t} \left(\cosh \frac{\Delta \Gamma_{s} t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_{s} t}{2}\right) \\ &\Gamma_{\bar{B}_{s}^{0} \to \Phi^{\mathcal{CP}} \gamma}\left(t\right) \quad \approx \quad \Gamma_{B_{s}^{0} \to \Phi^{\mathcal{CP}} \gamma}\left(t\right) \quad , \quad \text{Where } A^{\Delta} \text{=sin } 2 \psi \end{split}$$

- Sensitivity to A^{Δ} (assume $\Delta \Gamma_s / \Gamma_s \sim 0.12$)
 - σ(sin 2ψ) = 0.22 (2 fb⁻¹)
 - σ(sin 2ψ) = 0.02 (100 fb⁻¹)

(Extrapolation - Stat. errors only)

LHCb upgrade : the detector requirements

- The modern heavy quark experiments rely on
 - Favourable physics conditions
 - Essential to produce a large rate of (anti)b hadrons in the apparatus solid angle
 - Vertexing
 - Measure the displaced decay points, reduce background (*)
 - Particle identification
 - Kinematic constraints often do not permit to remove background contributions from other decay modes
 - Triggering
 - Need to select the interesting events with a high efficiency/purity (*)
 - Data acquisition and processing
 - The aim is to collect a large statistics

(*) vital for hadron colliders !

- LHCb was built to fulfil those requirements
- LHCb started to operate in very satisfactory conditions
 - The detector runs as expected
 - The present aim is to
 - consolidate the detector operations,
 - achieve fine calibrations and better understand LHCb
 - And of course : collect as much data as we can !

A flavour of the present LHCb

How can we upgrade ?

- The goal is to collect up to 5 / 6 fb⁻¹ during the present LHCb "first run" \rightarrow 2015
 - We may expect to get first hints for new physics
 - The upgraded LHCb should adapt to new physics
- Upgrade is strongly coupled to the LHC schedule \rightarrow 2 Phases
 - (1) LHC long shutdown in 2015/2016
 - Increase the instantaneous luminosity from 2x10³² to 10³³ cm⁻².s⁻¹
 - Complete re-design of the trigger scheme
 - New VELO
 - RICH photon detectors replacement
 - TT & IT replacement
 - New electronics for OT, calorimeter and muon system
 - (2) Second phase of the upgrade
 - Torch / Super-Rich detector
 - Better ECAL segmentation ?

Focusing on this phase

New Trigger Scheme (I)

- Only 1% of the inelastic cross-section is b production
- Not all the b hadrons are interesting
 - Present trigger is based on
 - L0 : fully hardware trigger selecting events, 4µs latency, readout at 1MHz
 - high Pt muons
 - high Et hadrons, photons, electrons
 - Veto on multiple interactions
 - HLT : software trigger
 - L0 confirmation
 - Impact parameter, full tracking, ...
 - Exclusive decays
- Upgrade would consist in reading out the entire detector at 40MHz
 - Full software trigger
- The goal is to increase the current yield by a factor 5 to 10 in dileptonic and hadronic channels
 - Present $D_s K^-$ channels efficiency ~ 25%
 - L0 efficiency ~ 50%

• HLT 1 / 2 : ~ 60% / 85% in $D_s K^-$

Room for improvement especially in

Hadronic channels $\rightarrow x2$

New Trigger Scheme (II)

- Reduction factor of 100000 on min-bias
- Hadronic trigger efficiency ~ 50%

Electronics and readout

- Electronics and readout completely re-design to permit readout @ 40MHz
- The events are zero-suppressed / packed at the front-end level
- The GBT technology is used to send the data from the FE to the readout syst.
- The readout boards are common to all the sub-detectors
- A throttling mechanism (Calo/Muon/Farm) is implemented to cope with
 - A staged DAQ which cannot handle the full rate
 - Unexpected high occupancies which prevent a full readout

The VErtex LOcator

- Present VELO has to be replaced (radiation)
- Precise measurement of the vertices
 - Aim is pattern recognition for the trigger
- The baseline is VELOPix, based on Medipix/TimePix readout chip
 - 256x256 pixels, 55µm square
 - 3 side buttable chip
 - TSV (Through Silicon Via) \rightarrow dead side may be reduced to 0.8mm (Medipix3)

0 () | | + + | / A A | A A | × | + | 0 ()

🕽 Start | 🏉 🕘 🥸 » 🎽 🖗 Flp di... 🖉 LHCb Y... 🔇 Inbox -... 🖗 http://... 🔮 HDTO... 🤮 YouTub... 🕲 New M... 🗐 Calculator 😰 teS.jpg. 🗈 teS.jpg. 🗈 teS.jpg.

Tracking

- Running at 2x10³³ is not acceptable for the present Outer tracker
 - Too high occupancy
 - Decide to limit the luminosity to 10³³ for phase I of upgrade (2016)
- Still the OT electronics has to be changed to cope with the 40MHz readout
 - First prototypes are being designed
- Two options are still envisaged for the ST (TT and IT)
 (1) Si options
 - Keep the existing modules unchanged
 - Need re-equip them with an upgraded electronics
 - Development of a new rad-hard FE chip @ 40MHz
 - Build new modules identical to the existing ones
 - (2) Fiber option
 - Several layers of scintillating fibers
 - Light collections with SiPM
 - Electronics is out of the acceptance (rad. tolerance)
 - First simulations show equivalent performances as Si
 - Requires important R&D but several labs are interested

Rich (+TOF)

- Rich HPD tied to 1MHz readout \rightarrow must be replaced
- Baseline candidate is the MA-PMT (Hamamatsu)
 - 8x8 pixels (of 2.0x2.0 mm²)
 - Characterisation of the chip shows good properties
 - Single photon response,
 - Uniformity,
 - Cross-talk,
 - Dark current.
 - Behaviour under magnetic field still to be checked
 - Temperature
- A front-end electronics is being designed
 - Target is
 - no pile-up (25ns)
 - Low consumption
- TOF (Torch)
 - TOF measurement could be coupled to the RICH for PID
 - 1 cm thick quartz plate at z=12m
 - 30ps resolution
 - Probably for the second upgrade phase

Calorimeter and Muon system

- The front-end electronics of the calorimeter to be replaced (40MHz readout)
 - The PMT have to be operated at lower gain
 - The electronics will compensate but need to maintain the same noise as before
 - 2 directions : ASIC and discrete components \rightarrow prototype being delivered
 - The L0 uses calo information (40MHz)
 - Plan is to keep on providing this to the farm to help software trigger (seeds)
- Radiation tolerance of the calorimeter inner modules
 - 2 modules irradiated at Protvino (Russia) and 2 other in the LHC tunnel
- Muon front-end electronics can basically be kept (already @ 40MHz)
 - The M1 chamber should be removed (background and upgraded L0)
 - The interface to the common readout has most probably to be adapted
 - The muon system should provide information to the throttling mechanism
 - Based on the present L0

Conclusion

- LHCb is being operated in very satisfactory conditions since day 1
- LHCb physics program is largely not affected by the present running conditions
- Physics sensitivity for LHCb gives good chance of seeing NP after 5 or 6 fb⁻¹
 - But we need high precision to
 - understand NP
 - Distinguish between different models
- We want a flexible trigger (software) to be able to study any kind of NP signal
- The phase I upgrade is mainly a trigger and readout upgrade
 - Better trigger performances (fully software trigger)
 - Readout @40MHz
 - and a new VELO, a new RICH photo-detection
- The letter of intent should be sent to the LHCC this year

The LHCb detector

