ANGLE MEASUREMENTS AND NEW PHYSICS

JURE ZUPAN JOSEF STEFAN INST. & UNIV. OF LJUBLJANA & SISSA

A SIMPLE REMINDER

why are we interested in measuring angles (and other CKM parameters)?

FPCP2010, Torino May 25, 2010

THE GOALS

- the goals:
 - measure parameters of SM Lagrangian a.k.a. "Lagrangian of Nature"
 - find deviations = New Physics
- in light of imminent discoveries at LHC turn around
 - measure properties of new states
 i.e. the "real Lagrangian of Nature"

WHAT ARE WE MEASURING?

- for some time our knowledge about new states discovered at LHC will be limited
- important to know:
 - which observables sensitive to NP
 - measuring SM triangle or something else?
 - an unrelated, but equally important, question: hadronic uncertainties
 - how well can we do?

WHAT TYPE OF NEW PHYSICS?

- as a template the new dimuon anomaly from D0
- cf. talk by Brooijmans, next session; D0 Collaboration, 1005.2757 • phase in B_s mixing (possibly B_d) away from SM cf. talks by Stone, Oakes, Chandra, next session;

anything in $\Delta F=1?$

ANGLES?

- How does this affect extraction of SM CKM parameters?
 - measurement of β cf. talk by Sumisawa, this session
 - measurement of α cf. talk by Dalseno, this session
 - measurement of γ cf. talks by Derkach, Thomas, this session
 - three body decays

measurement of β : new physics effects

- if NP in B_d mixing, β obviously affected
 - "measurement of β " is not measurement of CKM phase δ_{CKM}
- the NP shift in β is small though

FPCP2010, Torino May 25, 2010

HADR. UNCERTAINTIES IN MEASUREMENT OF β

- hadronic uncertainties cf. talk by Mannel at FPCP2009
 - $B_d \rightarrow J/\psi K_S$ tree dominated, how large is the penguin?
- comparison with $B_d \rightarrow J/\psi\pi^0$ gives shift of $\beta \rightarrow \beta - O(5\%)$ possible Faller, Fleischer, Jung, Mannel, 0809.0842 Chiuchini, Pierini, Silvestrini, hep-ph/0507290
 - SU(3) breaking? More precise measurements in $B_d \rightarrow J/\psi \pi^0$ needed
- perturbative and rescattering calculations give much smaller effects, below 0.1% Boos, Mannel, Reuter, hep-ph/0403085 Gronau, Rosner, 0812.4796

J. Zupan Angle measurements

MEASUREMENT OF α: NP EFFECTS

- $B \rightarrow \pi\pi$, $\varrho\varrho$, $\varrho\pi$, $a_1\pi$, tree level dominated
- if NP only in $\Delta F=2$
 - $|q/p| = 1.0002 \pm 0.0028$ so only phase changes
 - $\gamma = 180^{\circ} \alpha \beta$ measures SM δ_{CKM}
- what if NP in $\Delta F=1$?
 - no effect if $\Delta I = 1/2$ (penguin-like)
 - if ΔI=3/2 (tree-like): does it avoid other constraints?
 - answer only within NP model

MEASUREMENT OF α: HADRONIC UNCERTAINTIES

hadronic uncertainties: isospin breaking
calculable effects small, at degree level

Gronau, Zupan, 2005

MEASUREMENT OF γ: HADRONIC UNCERTAINTIES

in SM very clean theoretically
standard candle type of measurement

MEASUREMENT OF γ: NEW PHYSICS EFFECTS

- NP in Delta F=2?
 - charged B→DK no effect
 - in $B_d \rightarrow DK$, again only a change of β from SM value
 - if measured β used extracted γ is the SM one
- same for NP in B_s mixing, D mixing
 - use measured mixing parameters
 - careful about $\Delta\Gamma^{s}_{CP}$ vs. $\Delta\Gamma^{s}$
- NP in Delta F=1?: has to compete with tree level SM

THREE BODY DECAYS

Ciuchini, Pierini and Silvestrini, 2006; Gronau, Pirjol, JZ, 2006

• from $B \rightarrow K\pi\pi$ Dalitz plot

$$\bar{\eta} = \tan \Phi_{3/2} \left[\bar{\rho} - 0.24 \pm 0.03 \right]$$

• where in the absence of EWP $\Phi_{3/2}$ equals γ

$$\gamma = \Phi_{3/2} \equiv -rac{1}{2} {
m arg} \left(R_{3/2}
ight) \;, \qquad R_{3/2} \equiv rac{A_{3/2}}{A_{3/2}}$$

$$3A_{3/2} = A(B^0 \to K^{*+}\pi^-) + \sqrt{2}A(B^0 \to K^{*0}\pi^0)$$

- NP in mixing \Rightarrow use measured β
- penguin domin., more sensitive to NP in $\Delta F=1$
 - can we test for it?

J. Zupan Angle measurements

INTERMEDIATE SUMMARY

- If NP in mixing \Rightarrow easy to accommodate to obtain δ_{CKM} of SM
- What about direct CPV NP contribs.?

TEST FOR $\Delta F=1 NP$ CONTRIBUTIONS

- isospin sum rules
 - not necessarily directly related to angle measurements
 - but are very precise (just isospin)
- in $B \rightarrow K\pi$ known for some time now

Gronau, hep-ph/0508047

$$\Delta(K^{+}\pi^{-}) + \Delta(K^{0}\pi^{+}) - 2\Delta(K^{+}\pi^{0}) - 2\Delta(K^{0}\pi^{0}) \approx 0$$

 $-0.02 \ (-0.01) < A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+}) - A_{CP}(K^{+}\pi^{0}) - A_{CP}(K^{0}\pi^{0}) \le 0$

• for three body decays also a sum rule

• it uses SU(3) on tree ampl. only Gronau, Pirjol, JZ, 1001.0702

$$\begin{split} & \Delta(K\rho) - \Delta(K^*\pi) = 2\Delta\left((K^*\pi)_{3/2}\right) \\ & \Delta(f) \equiv \Delta_{+-}^f + \Delta_{0+}^f - 2\Delta_{+0}^f - 2\Delta_{00}^f \end{split}$$

EXTRA NP IN DECAY AMPLITUDES?

- α extraction only affected if NP not $\Delta I=0$
 - for $B \rightarrow \varrho \pi$ can use isospin pentagon as a check
- extraction of γ has a built in test for presence of extra NP in decay ampl.

$$A(B^{-} \to f_{D}K^{-}) \propto r_{D}e^{i\delta_{D}} + r_{B}e^{i\delta_{B}-\gamma} + r'_{B}e^{i\delta'_{B}-\gamma'}$$
$$A(B^{+} \to f_{D}K^{+}) \propto r_{D}e^{i\delta_{D}} + r_{B}e^{i\delta_{B}+\gamma} + r'_{B}e^{i\delta'_{B}+\gamma'}$$

• thus for B⁺ and B⁻ different r_B

 $r_{B^+} \rightarrow |r_B e^{i\delta_B + \gamma} + r'_B e^{i\delta'_B + \gamma'}|; r_{B^-} \rightarrow |r_B e^{i\delta_B - \gamma} + r'_B e^{i\delta'_B - \gamma'}|$

TEST OF DIRECT CP NP IN B→DK

• there is NP in $B \rightarrow DK$ amplitude if

$$r_{B^-} \neq r_{B^+}$$

• Belle and Babar already measure this

$$x_{\pm} = r_B \cos(\gamma \pm \delta_B)$$
$$y_{\pm} = \pm r_B \sin(\gamma \pm \delta_B)$$

even, if x²₊ + y²₊ = x²₋ + y²₋ still possible that γ is shifted

• another test: γ from $B^{\pm} \rightarrow DK^{\pm}$, $B^{\pm} \rightarrow DK^{*\pm}$, $B^{\pm} \rightarrow DK^{*\pm}$, $B^{\pm} \rightarrow D^{*}K^{\pm}$, $B^{0} \rightarrow DK^{0}$,... all need to coincide!

J. Zupan Angle measurements

ULTIMATE TEST

- Q: are we measuring SM γ ?
- A: yes if all measurements (α, γ, different channels) give the same γ (δ_{CKM})

CONCLUSIONS

- NP in mixing can be easily included/ accounted for when measuring angles
- NP in amplitudes can be tested for

FPCP2010, Torino May 25, 2010

BACKUP SLIDES