Recent Results In Bottomonium Physics

Peter Kim SLAC National Laboratory BaBar Collaboration

Flavor Physics and CP Violation 2010 May 28, 2010 Torino - Italy

Bottomonium Production

Upsilons discovered in di-muon channel (1977) E288 at Fermilab: $p + (Cu, Pt) \rightarrow \mu^+ \mu^- X$

Production studies at hadron machines continue: quarkonia production rate, polarization

Detailed study of (bb) states in spectroscopy, transitions between the states, and decays $\rightarrow e^+e^-$ storage rings.

Upsilon data samples

- Until 2008, CLEO has contributed most to bottomonium physics
- Then,

BaBar	01-02/2008: 03/2008:	120 M Y(3S) 100 M Y(2S)	
BELLE	06/2008: 12/2008: 11/2009:	100 M Y(1S) 46 M Y(2S) 124 M Y(2S)	(Processed data available now)
	11/2005.		

		CLEO III	BaBar	BELLE
N_events	Y(1S)	20 M		100 M
	Y(2S)	9 M	100 M	175 M
	Y(3S)	6 M	120 M	11 M

[Current data sample, till Super B Factories]

OUTLINE

Eichten et al, Rev. Mod. Phys. 80, 1161 (2008)

Inclusive Analysis of Y(2S,3S) $\rightarrow \gamma \eta_{b}$

- Non-peaking backgrounds
 - *udsc* production
 - Generic ISR
 - Bottomonium decays
- Peaking backgrounds
 - $Y(3S) \rightarrow \gamma \chi_{bJ}(2P);$ $\chi_{bJ}(2P) \rightarrow \gamma Y(1S) (J=0, 1, 2)$
 - $e^+e^- \rightarrow \gamma_{ISR} Y(1S)$
- To reduce continuum background:
 π⁰ veto and |cos θ_T| event shape cut

 ${
m E}_{\gamma} = 921.2^{+2.1}_{-2.8} \pm 2.4 \,\, {
m MeV}$

$$\begin{split} \mathrm{M}(\eta_b) &= 9388.9^{+3.1}_{-2.3} \pm 2.7 ~\mathrm{MeV/c^2} \\ \mathrm{M}(\Upsilon(1\mathrm{S})) - \mathrm{M}(\eta_b) &= 71.4^{+2.3}_{-3.1} \pm 2.7 ~\mathrm{MeV/c^2} \end{split}$$

 $B(\Upsilon(3S) o \gamma \, \eta_b) = [4.8 \pm 0.5 \pm 1.2] imes 10^{-4}$

Combined result

 ${
m M}(\eta_{
m b}) = 9390.8 \pm 3.2 \; {
m MeV/c^2}$

 ${
m M}(\Upsilon(1{
m S})) - {
m M}(\eta_{
m b}) = 69.5 \pm 3.2 \,\, {
m MeV/c^2}$

 $rac{B(\Upsilon(2S) o \gamma \, \eta_b)}{B(\Upsilon(3S) o \gamma \, \eta_b)} = 0.82 \pm 0.24^{+0.20}_{-0.19}$

$$egin{aligned} \mathrm{E}_{\gamma} &= 609.3^{+4.6}_{-4.5} \pm 1.9 \,\,\mathrm{MeV} \ \mathrm{M}(\eta_\mathrm{b}) &= 9394.2^{+4.8}_{-4.9} \pm 2.0 \,\,\mathrm{MeV/c^2} \ \mathrm{M}(\Upsilon(1\mathrm{S})) - \mathrm{M}(\eta_\mathrm{b}) &= 66.1^{+4.9}_{-4.8} \pm 2.0 \,\,\mathrm{MeV/c^2} \end{aligned}$$

$$B(\Upsilon(2S) o \gamma \, \eta_b) = [3.9^{+1.1}_{-1.0} \, {}^{+0.7}_{-0.9}] imes 10^{-4}$$

P Kim - FPCP 2010

Hyperfine Splitting: theory

pNRQCD in NLL

Summation of next-to leading logarithmic corrections using the nonrelativistic renormalization group Kniehl et al, PRL 92, 242001 (2004) A. Penin, hep-ph/0905.4296

$$E_{hfs} = M(Y(1S)) - M(\eta_b) = 41 \pm 11^{+8} (\alpha_s) MeV$$

Lattice QCD

<u>61.0 ± 14</u>	[HPQCD] PR D72, 094507(2005)			
<u>54.0 ± 12.4</u>	[Fermilab Lattice and MILC]			
	PR D81, 034508 (2010)			
<u>52.5 ± ?</u>	S. Meinel [Lattice/NRQCD]			
	PR D79, 094501 (2009)			
	QWG7 2010 (preliminary)			
Lattice spacing <i>a</i> is important for the b quark				
Converg	ing with Exp. Meas. at small a ?			

CLEO: Reanalysis of Y(3S) $\rightarrow \gamma \eta_b$

PR D 81, 031104(R) (2010)

- > Joint fit of 3 $|\cos\theta_T|$ regions
- Include ISR component in the fit

 4σ significance

 $\mathcal{B}(\Upsilon(3S) \to \gamma \eta_b) = (7.1 \pm 1.8 \pm 1.3) \times 10^{-4}$

 $M(\eta_b) = 9391.8 \pm 6.6 \pm 2.0 \text{ MeV}/c^2$

(Consistent with BABAR measurements)

BELLE: Y(2S) $\rightarrow \gamma \eta_{b}$

Inclusive search for η_b with 170 Million Y(2S) events: results expected soon

More pathways to η_{b} (1S) and η_{b} (2S)

• $Y(1S) \rightarrow \gamma \eta_b(1S)$ INCLUSIVE

E γ signal at 70 MeV No $~\chi_b$ background; No peaking ISR background

• Y(3S) $\rightarrow \gamma \eta_b(2S)$ INCLUSIVE

Eγ Signal at 360 MeV (Difficult region with nearby E1 transitions)

- $Y(3S) \rightarrow \pi^0 h_b(1P) \text{ or } \pi^+\pi^-h_b(1P); h_b(1P) \rightarrow \gamma \eta_b \text{ INCLUSIVE}$
- Y(3S) $\rightarrow \omega \eta_b$ (1S) INCLUSIVE
- Y(nS) $\rightarrow \gamma \eta_{b}$ (1S): Full reconstruction of exclusive channels
- Y(3S) $\rightarrow \gamma \eta_{b}$ (1S) INCLUSIVE; $\gamma \rightarrow e^{+}e^{-}$ conversion

Photon conversion rate at BaBar at a few % Good energy resolution of 5 MeV vs. 25 MeV calorimeter photons With a larger data set the η_b width measurement might be possible

Y(1³D_J)

- L = 2 narrow triplet states
 (J = 1,2,3)
- Accessible from the Y(3S) via double photon transitions through $\chi_b(2P)$

Observation of Y(1³D_J) in 4-photon transition [CLEO] PR D70, 032001 (2004)

Observation of $\Upsilon(1^3D_J) \to \pi^+\pi^-\Upsilon(1S)$

BaBar PRELIMINARY arXiv:1004.0175 [hep-ex]

 $Y(3S) \rightarrow \gamma_1 \gamma_2 Y(2S); Y(2S) \rightarrow \pi^+ \pi^- Y(1S)$ Control channel for systematic studies (calibration with Y(2S) mass

Reconstruction of 1D states in $\pi^+\pi^- Y(1S)$

- Very good mass resolution with charged tracks
- The L,J, and parity P can be tested from the $\pi^+\pi^-$ invariant mass and decay angular distributions
- Theoretical predictions
 - 0.2% P. Moxhay, PR D37, 2557 (1988)
 - 2% P. Ko, PR D47, 208 (1993)
 - 40% Y.P. Kuang & T.M. Yan, PR D24, 2874 (1981)
- Upper limit of <4% at 90%CL [CLEO]
- Allow exactly 4 tracks in the event: $\pi^+ \pi^- I^+ I^-$
- Y(1S) \rightarrow I⁺ I⁻ candidate mass kinematically constrained
- Require 2 photons (Eγ>60MeV) when combined with the 1D candidate, have energy/momentum consistent with the Y(3S)

Backgrounds

The backgrounds are small and non-peaking in the signal region $10.14 < M(\pi^+\pi^-l^+l^-) < 10.18 \text{ GeV/c}^2$

- 1. $Y(3S) \rightarrow \gamma \chi_b(2P) \rightarrow \gamma \omega Y(1S)$
 - $\omega \rightarrow \pi^+\pi^-\pi^0$
 - $\omega \rightarrow \pi^+\pi^-$, combine with a random (noise) γ
- 2. $Y(3S) \rightarrow \pi^{+}\pi^{-}Y(1S)$ with FSR γ 's
- 3. $Y(3S) \rightarrow \eta Y(1S)$ with $\eta \rightarrow \pi^+ \pi^- \pi^0(\gamma)$
- 4. $Y(3S) \rightarrow \gamma\gamma Y(2S) \text{ or } \pi^0 \pi^0 Y(2S)$ with $Y(2S) \rightarrow \pi^+ \pi^- Y(1S)$

Maximum Likelihood fit

- Three Y(1D_J) signal PDFs: double-Gaussian + Gaussian w. exponential tail
- Each of the 4 background PDFs determined from MC simulations
- 11 free parameters: 3 signal yields and 3 signal masses + 5 background parameters (BG 1 and 2 yields, $\chi_{b1}(2P)$ mass, $\chi_{b1,2}(2P) \rightarrow w(\rightarrow \pi^+\pi^-)$ yields)

Fit results

BaBar PRELIMINARY

J=1,2,3 combined: 53.8^{+10.2}_{-9.5} events

> 7.6 σ (stat. only) 6.2 σ (stat. + sys.)

J	Event yields	Significance (w.syst.)	Fitted mass value
1	10.6 _{-4.9} +5.7	2.0 (1.8) o	
2	33.9 _{-7.5} +8.2	6.5 (5.8) σ	10164.5 ± 0.8 ± 0.5
3	9.4 _{-5.2} +6.2	1.7 (1.6) σ	

 $\pi^+\pi^-$ invariant mass

BaBar PRELIMINARY

[T.-M. Yan, PRD22, 1652(1980); Y.-P. Kuang et al., PRD37, 1210(1988)]

Signal yields are background subtraced & efficiency corrected

 χ^2 probability for decay of a D, S, or ¹P₁ state to $\pi^+\pi^-$ Y(1S): 84.6%, 3.1%, or 0.3%

Angle χ between the $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ and $I^{\scriptscriptstyle +}I^{\scriptscriptstyle -}$ planes

[Dell'Aquila and Nelson, PRD33, 80 (1986)]

$$\mathrm{dN}/\mathrm{d}\chi \sim 1 + eta \mathrm{cos}(2\chi) \quad \mathrm{sign}(eta) = (-1)^J \mathrm{P}$$

Fit: $\beta = -0.41 \pm 0.29 \pm 0.10$

Consistent with J=2 and P=-1

- Mass calibration with Y(2S) mass: 0.7 MeV/ c^2 shift; 0.5 MeV/ c^2 sys. uncertainty
- Signal yield: Background variations \rightarrow sys. uncertainty of 2 events
- Efficiency: Differ up to 7.5% for different $E\gamma_1$ and $E\gamma_2$ combinations Use the dominant decay modes from theory & vary for systematics

Branching Fractions

1 ³ D _j	BF [Y(1 ³ D _J) $\rightarrow \pi^+\pi^-$ Y(1S)]	90% C.L. upper limit	Kwang & Yan (1981)	Ko (1993)	Moxhay (1988)
J=1	(0.42 _{-0.23} +0.27±0.10)%	< 0.82%	40%	1.6%	0.20%
J=2	(0.66 _{-0.14} ^{+0.15} ±0.06)%		46%	2.0%	0.25%
J=3	(0.29 _{-0.18} ^{+0.22} ±0.06)%	< 0.62%	49%	2.2%	0.27%

SUMMARY

- First observation of Y(1³D_J) in hadronic decays to $\pi^+\pi^-$ Y(1S)
- The dominant peak is consistent with J=2 assignment

 $Mass = (10164.5 \pm 0.8 \pm 0.5) \text{ MeV/c}^2$

CLEO: (10161.1 \pm 0.6 \pm 1.6) MeV/c²

Radiative Y(1S) decay to Charmonium

BELLE Preliminary, R. Mussa (QWG7 2010)

NRQCD predictions of short-distance transitions between bb and cc including color-octet contributions (Y-J Gao et al., hep-ph/0701009)

- Many predictions for 2-body radiative decay channels $Y(1S) \rightarrow \gamma \eta_c$, $\gamma \chi_c$, $\gamma f_0(980)$, $\gamma f_2(1270)$ $\chi_b \rightarrow \gamma J/\psi$, $\gamma \rho$, $\gamma \omega$, $\gamma \phi$
- Interference between QED and QCD amplitudes could enhance the rates
- Search for exotics: X(3872), X(3915), Y(4140)

Y(1S)

e

Charmonium

 $Y(1S) \rightarrow \gamma J/\psi \pi^+\pi^-; J/\psi \rightarrow I^+I^-$

Reject e+ and e- from photon conversion $|\cos\theta\gamma| < 0.9$ to suppress ISR events

1 event at X(3872) for J/ ψ signal region (none in the J/ ψ side bands) Large ISR background peak at ψ ' mass

 $Br(Y(1S) \rightarrow \gamma X(3872) \rightarrow \gamma J/\psi \pi^+\pi^-) < 2.2 \times 10^{-6}$

 $\eta_{c} \rightarrow K_{S}K^{-}\pi^{+} + c.c., K^{+}K^{-}\pi^{+}\pi^{-}, 2(K^{+}K^{-}), 2(\pi^{+}\pi^{-}), 3(\pi^{+}\pi^{-})$

Exclusive decay of η_c in 4 or 6 charged tracks

No η_c signal observed Peaking ISR J/ ψ background

 $Br(Y(1S) \rightarrow \gamma \eta_c) < 6.4 \times 10^{-5}$

$Y(1s) \rightarrow \gamma$ +charmonium: ex	y	BELLE PRELIMINARY		
$BR(Y(1S) \rightarrow f)^*10^6$ $Y(1S) \rightarrow \gamma \chi_{c0}$ $Y(1S) \rightarrow \gamma \chi_{c1}$ $Y(1S) \rightarrow \gamma \chi_{c2}$ $Y(1S) \rightarrow \gamma m$	90%CL UL 500 15 12 64	NRQCD p [K. T. Chao et a QCD 4.0 4.5 5.1 2 9	redictions II., hep-ph/0701009] QCD+QED 3.2 9.8 5.6 4 9	
$\begin{aligned} &Y(1S) \rightarrow \gamma \ X3872 \rightarrow \gamma \ \pi^{+}\pi^{-} \ J/\\ &Y(1S) \rightarrow \gamma \ X3872 \rightarrow \gamma \ \pi^{0}\pi^{+}\pi^{-}\\ &Y(1S) \rightarrow \gamma \ X3915 \rightarrow \gamma \ \pi^{0}\pi^{+}\pi^{-}\\ &Y(1S) \rightarrow \gamma \ Y4140 \rightarrow \gamma \ \phi J/\psi \end{aligned}$	/ψ 2.2 J/ψ 3.4 J/ψ 3.4 2.6	$\frac{1}{s_1} \underbrace{\int_{0}^{s_1^{N_1^{N_1^{N_1^{N_1^{N_1^{N_1^{N_1^{N$	$\begin{array}{c} \mathbf{QCD} \\ \downarrow \\ $	

- Experimental sensitivity with 100 M Y(1S) events still above theory predictions Exotics searches with J/ ψ decaying to lepton pairs especially could use more data!
- $[\pi^+\pi^- \text{recoil}]$ tagging of Y(1S) in Y(2S) $\rightarrow \pi^+\pi^-$ Y(1S) could provide clean Y(1S) sample without QED/ISR background: very useful in analysis of low-multiplicity final states

Observation of Inclusive $D^{*\pm}$ Production in $\Upsilon(1S)$ Decay

P Kim - FPCP 2010

PR D81, 011102(R) (2010)

 Υ (2S) $\rightarrow \pi^+\pi^- \Upsilon$ (1S) : 18 M events

Use $M_{\pi^+\pi^-}$ recoil to tag Υ (1S)

(No continuum c c background!)

- Standard D*+ construction with narrow M(D*)-M(D) cut
- Subtract combinatorial background using the $M_-\pi^+\pi^-$ recoil side bands and wrong-sign K π combinations
- Fit $M(D^0)$ in momentum bins of Xp = [0.1, 1.0]

Reconstruction efficiency from Monte Carlo signal events

Inclusive D* momentum distribution

- $Br(\Upsilon(1S) \rightarrow D^{*\pm} + X) = (2.52 \pm 0.13 \pm 0.15)\%$
- Exceeds QED rate by (1.00±0.28)% (3.6σ)
- Consistent with color singlet prediction $(1.20 \pm 0.29)\%$ [Kang et al.]

First evidence for open charm: more work to follow

- With 10⁸ Y(nS) events, new exciting results from BaBar and BELLE
- However, we are already facing statistical limits in rare decay modes
- 10¹⁰ data samples can be collected in a few months at

Conclusions

- Hyperfine splitting between the Y(1S) and the η_b provides a valuable testing ground for NRQCD and Lattice QCD theories
- First observation of hadronic decay of the $Y(1^{3}D_{J})$ states and more precise mass measurement of the J=2 state
- Searches for charmonium production in radiative 2-body decays of Y(1S)
- First measurement of inclusive D* meson production in Y(1S) decay
- More new results are expected soon