Recent Results In
 Bottomonium Physics

Peter Kim
SLAC National Laboratory
BaBar Collaboration

Flavor Physics and CP Violation 2010 May 28, 2010 Torino - Italy

Bottomonium Production

Upsilons discovered in di-muon channel (1977) E288 at Fermilab: $\mathrm{p}+(\mathrm{Cu}, \mathrm{Pt}) \rightarrow \mu^{+} \mu^{-} \mathrm{X}$

Production studies at hadron machines continue: quarkonia production rate, polarization

Detailed study of (b \bar{b}) states in spectroscopy, transitions
 between the states, and decays $\Rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$storage rings.

Upsilon data samples

- Until 2008, CLEO has contributed most to bottomonium physics
- Then,

BaBar	$01-02 / 2008:$	$120 \mathrm{M} \mathrm{Y}(3 S)$
	$03 / 2008:$	$100 \mathrm{M} \mathrm{Y}(2 \mathrm{~S})$
BELLE	$06 / 2008:$	$100 \mathrm{M} \mathrm{Y}(1 \mathrm{~S})$
	$12 / 2008:$	$46 \mathrm{M} \mathrm{Y}(2 \mathrm{~S})$
	$11 / 2009:$	$124 \mathrm{M} \mathrm{Y}(2 \mathrm{~S}) \quad$ (Processed data available now)

N_events		CLEO III	BaBar	BELLE
	$\mathrm{Y}(1 \mathrm{~S})$	20 M		100 M
	$\mathrm{Y}(2 \mathrm{~S})$	9 M	100 M	175 M
	$\mathrm{Y}(3 \mathrm{~S})$	6 M	120 M	11 M

[Current data sample, till Super B Factories]

OUTLINE

- η_{b}
- $Y\left(1^{3} D_{J}\right) \rightarrow \pi^{+} \pi^{-} Y(1 S)$
- $\mathrm{Y}(\mathrm{nS}) \rightarrow \gamma$ charmonium
- $\mathrm{Y}(1 \mathrm{~S}) \rightarrow$ Inclusive open charm (D*X)
- Summary

Eichten et al, Rev. Mod. Phys. 80, 1161 (2008)

Inclusive Analysis of $\mathrm{Y}(2 \mathrm{~S}, 3 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{b}}$

- Non-peaking backgrounds
- udsc production
- Generic ISR
- Bottomonium decays
- Peaking backgrounds
- $\mathrm{Y}(3 S) \rightarrow \gamma \chi_{b}(2 P)$;

$$
\chi_{b J}(2 P) \rightarrow \gamma \mathrm{Y}(1 S)(J=0,1,2)
$$

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \mathrm{Y}(1 S)$
- To reduce continuum background:

π^{0} veto and $\left|\cos \theta_{T}\right|$ event shape cut

Hyperfine Splitting: theory

pNRQCD in NLL
Summation of next-to leading logarithmic corrections using the nonrelativistic renormalization group

Kniehl et al, PRL 92, 242001 (2004)
A. Penin, hep-ph/0905.4296

$$
\mathrm{E}_{h f s}=M(\mathrm{Y}(1 \mathrm{~S}))-M\left(\eta_{\mathrm{b}}\right)=41 \pm 11{ }^{+8}{ }_{-9}\left(\alpha_{\mathrm{s}}\right) \mathrm{MeV}
$$

Lattice QCD

61.0 ± 14 [HPQCD] PR D72, 094507(2005)
54.0 ± 12.4 [Fermilab Lattice and MILC]
PR D81, 034508 (2010)
$52.5 \pm$? \quad S. Meinel [Lattice/NRQCD]
PR D79, 094501 (2009)
QWG7 2010 (preliminary)
Lattice spacing a is important for the b quark Converging with Exp. Meas. at small a ?

CLEO: Reanalysis of $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{b}}$

PR D 81, 031104(R) (2010)
$>$ Joint fit of $3\left|\cos \theta_{T}\right|$ regions
> Include ISR component in the fit
4σ significance

$$
\begin{gathered}
\mathcal{B}\left(\Upsilon(3 S) \rightarrow \gamma \eta_{b}\right)=(7.1 \pm 1.8 \pm 1.3) \times 10^{-4} \\
M\left(\eta_{b}\right)=9391.8 \pm 6.6 \pm 2.0 \mathrm{MeV} / c^{2}
\end{gathered}
$$

(Consistent with BABAR measurements)

BELLE: $\mathrm{Y}(2 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{b}}$

Inclusive search for η_{b} with 170 Million $\mathrm{Y}(2 \mathrm{~S})$ events: results expected soon

More pathways to $\eta_{b}(1 S)$ and $\eta_{b}(2 S)$

- $\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{b}}(1 \mathrm{~S}) \quad$ INCLUSIVE

E γ signal at 70 MeV
No χ_{b} background; No peaking ISR background

- $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{b}}(2 \mathrm{~S}) \quad$ INCLUSIVE
$\mathrm{E} \gamma$ Signal at $\mathbf{3 6 0} \mathbf{M e V}$ (Difficult region with nearby E1 transitions)
- $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \pi^{0} \mathrm{~h}_{\mathrm{b}}(1 \mathrm{P})$ or $\pi^{+} \pi^{-} \mathrm{h}_{\mathrm{b}}(1 \mathrm{P}) ; \mathrm{h}_{\mathrm{b}}(1 \mathrm{P}) \rightarrow \gamma \eta_{\mathrm{b}}$ INCLUSIVE
- $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \omega \eta_{\mathrm{b}}(1 \mathrm{~S})$ INCLUSIVE
- $\mathrm{Y}(\mathrm{nS}) \rightarrow \gamma \eta_{b}(1 \mathrm{~S})$: Full reconstruction of exclusive channels
- $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \gamma \eta_{b}(1 \mathrm{~S}) \quad$ INCLUSIVE; $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$conversion

Photon conversion rate at BaBar at a few \% Good energy resolution of 5 MeV vs. 25 MeV calorimeter photons With a larger data set the η_{b} width measurement might be possible

$Y\left(1^{3} D_{J}\right)$

- L = 2 narrow triplet states

$$
(J=1,2,3)
$$

- Accessible from the $Y(3 S)$ via double photon transitions through $\chi_{b}(2 P)$

Consistent with $\mathrm{M}=10160 \pm 10 \mathrm{MeV}$ Godfrey and Rosner, PR D64, 097501 (2001)
$B F=3.7 \times 10^{-5} \quad$ Kwong and Rosner, PR D38, 279 (1988)

Observation of $\Upsilon\left(1^{3} D_{J}\right) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)$

> BaBar PRELIMINARY arXiv:1004.0175 [hep-ex]

$\mathrm{Y}(3 \mathrm{~S}) \rightarrow \gamma_{1} \gamma_{2} \mathrm{Y}(2 \mathrm{~S}) ; \mathrm{Y}(2 \mathrm{~S}) \rightarrow \pi^{+} \pi^{-} \mathrm{Y}(1 \mathrm{~S})$
Control channel for systematic studies (calibration with $\mathrm{Y}(2 \mathrm{~S})$ mass

Reconstruction of 1D states in $\pi^{+} \pi^{-} Y(1 S)$

- Very good mass resolution with charged tracks
- The L, J, and parity P can be tested from the $\pi^{+} \pi^{-}$ invariant mass and decay angular distributions
- Theoretical predictions
0.2\% P. Moxhay, PR D37, 2557 (1988)

2\% P. Ko, PR D47, 208 (1993)
40\% Y.P. Kuang \& T.M. Yan, PR D24, 2874 (1981)

- Upper limit of $<4 \%$ at 90% CL [CLEO]
- Allow exactly 4 tracks in the event: $\pi^{+} \pi^{-} I^{+} I^{-}$
- $Y(1 S) \rightarrow I^{+} I^{-}$candidate mass kinematically constrained
- Require 2 photons ($\mathrm{E} \gamma>60 \mathrm{MeV}$) when combined with the 1D candidate, have energy/momentum consistent with the $Y(3 S)$

Backgrounds

The backgrounds are small and non-peaking in the signal region

$$
10.14<\mathrm{M}\left(\pi^{+} \pi^{-} I^{+} l^{-}\right)<10.18 \mathrm{GeV} / \mathrm{c}^{2}
$$

$$
\text { 1. } \mathrm{Y}(3 S) \rightarrow \gamma \chi_{b}(2 \mathrm{P}) \rightarrow \gamma \omega \mathrm{Y}(1 \mathrm{~S})
$$

- $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$
- $\omega \rightarrow \pi^{+} \pi^{-}$, combine with a random (noise) γ

2. $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \pi^{+} \pi^{-} \mathrm{Y}(1 \mathrm{~S})$ with $\mathrm{FSR} \gamma^{\prime} \mathrm{s}$
3. $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \eta \mathrm{Y}(1 \mathrm{~S})$ with $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}(\gamma)$
4. $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \gamma \gamma \mathrm{Y}(2 \mathrm{~S})$ or $\pi^{0} \pi^{0} \mathrm{Y}(2 \mathrm{~S})$ with $\mathrm{Y}(2 \mathrm{~S}) \rightarrow \pi^{+} \pi^{-} \mathrm{Y}(1 \mathrm{~S})$

Maximum Likelihood fit

- Three $Y\left(1 D_{\mathrm{J}}\right)$ signal PDFs: double-Gaussian + Gaussian w. exponential tail
- Each of the 4 background PDFs determined from MC simulations
- 11 free parameters: 3 signal yields and 3 signal masses +5 background parameters (BG 1 and 2 yields, $\chi_{b 1}(2 P)$ mass, $\chi_{b 1,2}(2 P) \rightarrow \mathrm{w}\left(\rightarrow \pi^{+} \pi^{-}\right.$) yields)

Fit results

$\mathrm{J}=1,2,3$ combined:
$53.8_{-9.5}^{+10.2}$ events
7.6σ (stat. only)
6.2σ (stat. + sys.)

J	Event yields	Significance (w.syst.)	Fitted mass value
1	$10.6_{-4.9}{ }^{+5.7}$	$2.0(1.8) \sigma$	
2	$33.9_{-7.5^{+8.2}}$	$6.5(5.8) \sigma$	$10164.5 \pm 0.8 \pm 0.5$
3	$9.4_{-5.2^{+6.2}}$	$1.7(1.6) \sigma$	

$\pi^{+} \pi^{-}$invariant mass

BaBar PRELIMINARY

[T.-M. Yan, PRD22, 1652(1980); Y.-P. Kuang et al.,PRD37,1210(1988)]
Signal yields are background subtraced \& efficiency corrected
χ^{2} probability for decay of a D, S, or ${ }^{1} P_{1}$ state to $\pi^{+} \pi^{-} \mathrm{Y}(1 \mathrm{~S}): 84.6 \%, 3.1 \%$, or 0.3%

Angle χ between the $\pi^{+} \pi^{-}$and $I^{+} I^{-}$planes
[Dell'Aquila and Nelson, PRD33, 80 (1986)]
$\mathrm{dN} / \mathrm{d} \chi \sim 1+\beta \cos (2 \chi) \quad \operatorname{sign}(\beta)=(-1)^{J} \mathrm{P}$
Fit: $\beta=-0.41 \pm 0.29 \pm 0.10$
Consistent with $\mathrm{J}=2$ and $\mathrm{P}=-1$

π^{+}helicity angle $\theta_{\pi^{+}}$
$\mathrm{dN} / \mathrm{d} \cos \theta_{\pi^{+}} \sim 1+\xi\left(3 \cos ^{2} \theta_{\pi^{+}}-1\right) / 2$
Fit: $\xi=-1.0 \pm 0.4 \pm 0.1$
Consistent with $\underline{\mathrm{J}=2}$

- Mass calibration with $\mathrm{Y}(2 \mathrm{~S})$ mass: $0.7 \mathrm{MeV} / \mathrm{c}^{2}$ shift; $0.5 \mathrm{MeV} / \mathrm{c}^{2}$ sys. uncertainty
- Signal yield: Background variations \rightarrow sys. uncertainty of 2 events
- Efficiency: Differ up to 7.5% for different $\mathrm{E} \gamma_{1}$ and $\mathrm{E} \gamma_{2}$ combinations

Use the dominant decay modes from theory \& vary for systematics

Branching Fractions

$1^{3} \mathrm{D}_{J}$	BF [Y(13 $\left.\left.{ }^{3} \mathrm{D}_{\mathrm{j}}\right) \rightarrow \pi^{+} \pi^{-} \mathrm{Y}(1 \mathrm{~S})\right]$	90\% C.L. upper limit	$\begin{gathered} \text { Kwang \& } \\ \text { Yan (1981) } \end{gathered}$	$\begin{gathered} \text { Ко } \\ (1993) \end{gathered}$	Moxhay (1988)
$\mathrm{J}=1$	$\left(0.42_{-0.23}{ }^{+0.27} \pm 0.10\right) \%$	< 0.82\%	40\%	1.6\%	0.20\%
$\mathrm{J}=2$	$\left(0.66_{-0.14}{ }^{+0.15} \pm 0.06\right) \%$		46\%	2.0\%	0.25\%
$\mathrm{J}=3$	$\left(0.29{ }_{-0.18}{ }^{+0.22} \pm 0.06\right) \%$	< 0.62\%	49\%	2.2\%	0.27\%

SUMMARY

- First observation of $Y\left(1^{3} D_{j}\right)$ in hadronic decays to $\pi^{+} \pi^{-} Y(1 S)$
- The dominant peak is consistent with $\mathrm{J}=2$ assignment Mass $=(10164.5 \pm 0.8 \pm 0.5) \mathrm{MeV} / \mathrm{c}^{2}$ CLEO: (10161.1 $\pm 0.6 \pm 1.6) \mathrm{MeV} / \mathrm{c}^{2}$

Radiative $\mathrm{Y}(1 \mathrm{~S})$ decay to Charmonium

BELLE Preliminary, R. Mussa (QWG7 2010)

NRQCD predictions of short-distance transitions between bb and cc including color-octet contributions (Y-J Gao et al., hep-ph/0701009)

QED

Typical QCD

Color octet

- Many predictions for 2-body radiative decay channels

$$
\begin{aligned}
& \mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \eta_{c}, \gamma \chi_{c}, \gamma \mathrm{f}_{0}(980), \gamma \mathrm{f}_{2}(1270) \\
& \chi_{\mathrm{b}} \rightarrow \gamma \mathrm{~J} / \psi, \gamma \rho, \gamma \omega, \gamma \phi
\end{aligned}
$$

- Interference between QED and QCD amplitudes could enhance the rates
- Search for exotics: X(3872), X(3915), Y(4140)

$\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \mathrm{J} / \psi \pi^{+} \pi^{-}$

$\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{c}}$

$$
\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \mathrm{J} / \psi \pi^{+} \pi^{-} ; \mathrm{J} / \psi \rightarrow \mathrm{I}^{+-}
$$

Reject e+ and e- from photon conversion $|\cos \theta \gamma|<0.9$ to suppress ISR events

1 event at $\mathrm{X}(3872)$ for J / ψ signal region (none in the J / ψ side bands) Large ISR background peak at ψ ' mass
$\operatorname{Br}\left(\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \mathrm{X}(3872) \rightarrow \gamma \mathrm{J} / \psi \pi^{+} \pi^{-}\right)<2.2 \times 10^{-6}$

$\eta_{c} \rightarrow K_{s} K \cdot \pi^{+}+c . c ., K^{+} K^{-} \pi^{+} \pi^{-}, 2\left(K^{+} K^{-}\right), 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$

Exclusive decay of $\boldsymbol{\eta}_{\mathrm{c}}$ in 4 or 6 charged tracks
No η_{c} signal observed
Peaking ISR J/ ψ background

$$
\operatorname{Br}\left(\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \eta_{c}\right)<6.4 \times 10^{-5}
$$

$\mathrm{BR}(\mathrm{Y}(1 \mathrm{~S}) \rightarrow f)^{* 1} 0^{6}$

	$90 \% \mathrm{CL}$ UL
$\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \chi_{\mathrm{c} 0}$	500
$\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \chi_{\mathrm{c} 1}$	15
$\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \chi_{\mathrm{c} 2}$	12
$\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{c}}$	64
$\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \mathrm{X} 3872 \rightarrow \gamma \pi^{+} \pi^{-} \mathrm{J} / \Psi$	2.2
$\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \mathrm{X} 3872 \rightarrow \gamma \pi^{0} \pi^{+} \pi^{-} \mathrm{J} / \Psi$	3.4
$\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \mathrm{X} 3915 \rightarrow \gamma \pi^{0} \pi^{+} \pi^{-} \mathrm{J} / \Psi$	3.4
$\mathrm{Y}(1 \mathrm{~S}) \rightarrow \gamma \mathrm{Y} 4140 \rightarrow \gamma \phi \mathrm{~J} / \Psi$	2.6

NRQCD predictions

[K. T. Chao et al., hep-ph/0701009]

QCD	QCD+QED
4.0	3.2
4.5	9.8
5.1	5.6
2.9	4.9

QED

- Experimental sensitivity with $100 \mathrm{M} \mathrm{Y}(1 \mathrm{~S})$ events still above theory predictions Exotics searches with J / ψ decaying to lepton pairs especially could use more data!
- [$\pi^{+} \pi^{-}$recoil] tagging of $Y(1 S)$ in $Y(2 S) \rightarrow \pi^{+} \pi^{-} Y(1 S)$ could provide clean $Y(1 S)$ sample without QED/ISR background: very useful in analysis of low-multiplicity final states

$\Upsilon(1 S) \rightarrow D^{* \pm}+X$

Observation of Inclusive $\mathrm{D}^{* \pm}$ Production in $\mathrm{Y}(1 \mathrm{~S})$ Decay

$\Upsilon(2 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S): 18 M$ events

Use $M_{-} \pi^{+} \pi^{-}$recoil to tag $\Upsilon(1 S)$
(No continuum c $\overline{\mathrm{c}}$ background!)
PR D81, 011102(R) (2010)

- Standard D^{*+} construction with narrow $M\left(D^{*}\right)-M(D)$ cut
- Subtract combinatorial background using the $M_{-} \pi^{+} \pi^{-}$ recoil side bands and wrong-sign $K \pi$ combinations
- Fit $\mathrm{M}\left(\mathrm{D}^{0}\right)$ in momentum bins of $\mathrm{Xp}=[0.1,1.0]$

Reconstruction efficiency from Monte Carlo signal events

- $\quad \operatorname{Br}\left(\Upsilon(1 S) \rightarrow D^{* \pm}+X\right)=(2.52 \pm 0.13 \pm 0.15) \%$
- Exceeds QED rate by $(1.00 \pm 0.28) \% \quad(3.6 \sigma)$
- Consistent with color singlet prediction (1.20 $\pm 0.29) \% \quad$ [Kang et al.]

First evidence for open charm: more work to follow

- With $10^{8} \mathrm{Y}(\mathrm{nS})$ events, new exciting results from BaBar and BELLE
- However, we are already facing statistical limits in rare decay modes
- 10^{10} data samples can be collected in a few months at

Conclusions

- Hyperfine splitting between the $Y(1 S)$ and the η_{b} provides a valuable testing ground for NRQCD and Lattice QCD theories
- First observation of hadronic decay of the $Y\left(1^{3} D_{J}\right)$ states and more precise mass measurement of the $\mathrm{J}=2$ state
- Searches for charmonium production in radiative 2-body decays of $Y(1 S)$
- First measurement of inclusive D^{*} meson production in $\mathrm{Y}(1 \mathrm{~S})$ decay
- More new results are expected soon

