Hadronic Charm Decays

Jonas Rademacker on behalf of CLEO-c

Hadronic Charm Decays (without the coolest bits)

Jonas Rademacker on behalf of CLEO-c

Hadronic Charm Decays (without the coolest bits)

Jonas Rademacker on behalf of CLEO-c

Correlated charm for γ covered by Chris Thomas, yesterday

Mixing and CP violation in charm covered in dedicated session tomorrow

Hadronic Charm Decays (without the coolest bits)

Jonas Rademacker on behalf of CLEO-c

Plenty of good stuff left: Very comprehensive sets of absolute and relative branching fractions (incl. results from CLEO-c's full D and Ds dataset), symmetries of the strong interaction, strong phases, Dalitz analyses. Correlated charm for γ covered by Chris Thomas, yesterday

Mixing and CP violation in charm covered in dedicated session tomorrow

Facilities

- Most hadronic charm decays are found when looking for B mesons: By the B factories (ca 3 billion D mesons), by CDF's hadronic B trigger (even larger amounts, only a small fraction analysed). LHCb will reconstruct unprecedented amounts and has a dedicated charm programme.
- But: Quantity is not everything. FOCUS, a fixed-target charm experiment, is responsible for many world-leading charm results. CLEO-c has only ~0.3% of the amount of charm that the B factories have produced, but delivers unique and competitive results due to the special properties of threshold production. BES-III to continue the good work.

Absolute BF

• Important normalising modes: $D^0 \to K^- \pi^+$

- Methods need to know there is a D before reconstructing it
 - BaBar: partial reconstruction of D^{*}→Dπ, using only the π (and the rest of the event, but not the D)
 - BELLE: $e^+e^- \rightarrow D_s^{*+}D_{s1}^- (\rightarrow \overline{D}^{*0}K^-)$

• CLEO-c:
$$e^+e^- \rightarrow \overline{D}^{(*)}_{(s)} D_{(s)}$$

Branching Fractions of $D, D_{(S)} \rightarrow PP$

818/pb at ψ (3770) $3 \cdot 10^{6} D^{\circ}D^{\circ}$ $2.4 \cdot 10^{6}$

586/pb at √s=4170 MeV $5.4 \cdot 10^5 \text{ Ds}^+ \text{ Ds}^-$

	e II dat	a set Phys	<u>RevD.81.052013 (2009)</u>	
\cap FO-C.	TABLE II: Nation of bl $D_s \rightarrow K^0_s K^+$, branchin	ranching fractions to the correspond g fractions results from this analysis	nding normalization modes $D^0 \to K^- \pi^+$ s, and charge asymmetries \mathcal{A}_{CP} . Uncertain	, $D^+ \to K^- \pi^+ \pi^+$, and at is a restatistical error
	systematic error, and th	e error from the input branching fra	actions of normalization modes.	
	Mode	$\frac{\beta}{\beta}$	This result $\mathcal{B}(\%)$	A_{CR} (%)
	$D^0 \rightarrow K^+ K^-$	$10.4138 \pm 0.1064 \pm 0.1128$	$0.4052 \pm 0.0041 \pm 0.0044 \pm 0.0080$	MCP (70)
	$D^0 \rightarrow K^0_{\rm C} K^0_{\rm C}$	$0.4095 \pm 0.0432 \pm 0.0214$	$0.0159 \pm 0.0017 \pm 0.0008 \pm 0.0003$	
	$D^0 ightarrow \pi^+ \pi^-$	$3.7023 \pm 0.0561 \pm 0.0893$	$0.1441 \pm 0.0022 \pm 0.0035 \pm 0.0029$	
$\pm 11/(0770)$	$D^0 o \pi^0 \pi^0$	$2.1491 \pm 0.0740 \pm 0.0758$	$0.0836 \pm 0.0029 \pm 0.0030 \pm 0.0017$	
() ($(((((((((((((((((((((((((((((((((($	$D^0 \to K^- \pi^+$	100	3.8910 external input [2]	$0.5 \pm 0.4 \pm 0.9$
$\Psi(0,1,0)$	$D^0 \to K^0_S \pi^0$	$31.0495 \pm 0.2964 \pm 0.7467$	$1.2081 \pm 0.0115 \pm 0.0291 \pm 0.0239$	
	$D^0 o K^0_S \eta$	$12.2575 \pm 0.2872 \pm 0.6677$	$0.4769 \pm 0.0112 \pm 0.0260 \pm 0.0094$	
0 ו ו סר	$D^0 o \pi^0 \eta$	$1.7714 \pm 0.1481 \pm 0.1047$	$0.0689 \pm 0.0058 \pm 0.0041 \pm 0.0014$	
	$D^0 o K^0_S \eta'$	$24.7307 \pm 0.8154 \pm 1.1433$	$0.9623 \pm 0.0317 \pm 0.0445 \pm 0.0190$	
	$D^0_{-} ightarrow \pi^0 \eta'$	$2.4084 \pm 0.2874 \pm 0.1519$	$0.0937 \pm 0.0112 \pm 0.0059 \pm 0.0019$	
	$D_{\perp}^{0} \rightarrow \eta \eta$	$4.2495 \pm 0.2838 \pm 0.3522$	$0.1653 \pm 0.0110 \pm 0.0137 \pm 0.0033$	
)+)-	$D^0 o \eta \eta'$	$2.7318 \pm 0.6235 \pm 0.2500$	$0.1063 \pm 0.0243 \pm 0.0097 \pm 0.0021$	
	$D^+ \rightarrow K^- \pi^+ \pi^+$	100	9.1400 external input [2]	$-0.1 \pm 0.4 \pm 0.9$
	$D^+ \rightarrow K^0_S K^+$	$3.3502 \pm 0.0573 \pm 0.0720$	$0.3062 \pm 0.0052 \pm 0.0066 \pm 0.0066$	$-0.2 \pm 1.5 \pm 0.9$
	$D^+ \rightarrow \pi^+ \pi^0$	$1.3208 \pm 0.0382 \pm 0.0443$	$0.1207 \pm 0.0035 \pm 0.0041 \pm 0.0026$	$2.9 \pm 2.9 \pm 0.3$
	$D^+ \rightarrow K^o_S \pi^+$	$16.8160 \pm 0.1239 \pm 0.3679$	$1.5370 \pm 0.0113 \pm 0.0336 \pm 0.0331$	$-1.3 \pm 0.7 \pm 0.3$
	$D^+ \rightarrow K^+ \pi^\circ$	$0.1923 \pm 0.0206 \pm 0.0063$	$0.0176 \pm 0.0019 \pm 0.0006 \pm 0.0004$	$-3.5 \pm 10.7 \pm 0.9$
	$D^+ \rightarrow K^+ \eta$	< 0.1442 (90% C.L.)	< 0.0132 (90% C.L.)	
+	$D^+ \rightarrow \pi^+ \eta$ $D^+ = E^+ \prime$	$3.8538 \pm 0.0895 \pm 0.1916$	$0.3522 \pm 0.0082 \pm 0.0175 \pm 0.0076$	$-2.0 \pm 2.3 \pm 0.3$
	$D^+ \rightarrow K^+ \eta$ $D^+ \rightarrow \pi^+ \pi'$	< 0.2032 (90% C.L.) 5 2061 $\pm 0.1762 \pm 0.2565$	< 0.0187 (90% C.L.) 0.4758 $\pm 0.0161 \pm 0.0234 \pm 0.0103$	$40 \pm 24 \pm 0.6$
	$D \rightarrow \pi \eta$ $D^+ \rightarrow K^0 K^+$	$5.2001 \pm 0.1702 \pm 0.2303$	$0.4758 \pm 0.0101 \pm 0.0254 \pm 0.0105$	$-4.0 \pm 3.4 \pm 0.0$
	$D_s \rightarrow K_S K$ $D^+ \rightarrow \pi^+ \pi^0$	100 2 3409 (00% C L)	(1.4900 external input [5])	$4.7 \pm 1.0 \pm 0.9$
	$D_s^+ \rightarrow K_{-\pi^+}^0$	2.5452(5070 C.L.) 8 4766 ± 0.7147 ± 0.1778	$0.1263 \pm 0.0106 \pm 0.0026 \pm 0.0073$	$163 \pm 73 \pm 03$
	$D^+_s \rightarrow K^+ \pi^0$	$4.2383 \pm 1.4756 \pm 0.2304$	$0.0632 \pm 0.0220 \pm 0.0034 \pm 0.0036$	$-26.6 \pm 23.8 \pm 0.9$
	$D_s^+ \rightarrow K^+ \eta$	$11.7933 \pm 2.1753 \pm 0.5888$	$0.1757 \pm 0.0324 \pm 0.0088 \pm 0.0101$	$9.3 \pm 15.2 \pm 0.9$
D + D -	$D_s^+ ightarrow \pi^+ \eta$	$123.1123 \pm 4.2907 \pm 6.2133$	$1.8344 \pm 0.0639 \pm 0.0926 \pm 0.1059$	$-4.6 \pm 2.9 \pm 0.3$
	$D_s^+ \to K^+ \eta'$	$11.9866 \pm 3.6840 \pm 0.6158$	$0.1786 \pm 0.0549 \pm 0.0092 \pm 0.0103$	$6.0 \pm 18.9 \pm 0.9$
	$D_{s}^{+} \rightarrow \pi^{+} \eta^{\prime}$	$269.8080 \pm 8.9375 \pm 14.0957$	$4.0201 \pm 0.1332 \pm 0.2100 \pm 0.2320$	$-6.1 \pm 3.0 \pm 0.6$

Some results I'll show later use only part the data set.

Diagrammatic Approach

As in the tagged $D \to K_L^0$ struction efficiency is higher therefore, we apply correction Monte Carlo simulations. The $D \to K_L^0 \pi$, given that the tag with in these simulations. It is effinding the π without any fak For the $D^0 \to K_L^0 \pi^0$ brance the same three \overline{D}^0 decay mode requirements as in the tagged for the $\overline{D}^0 \to K_L^0 \pi^0$ brance the same three \overline{D}^0 decay mode requirements as in the tagged for a final difference in the of $K^0 \pi^0 \pi^0$ tags. Combining the

Express CF decays in terms $\mathcal{A}_{\pi}^{\text{formal states}}$ invariant diagrams, fit to measure interms in the mass of the second states and rejecting even

			$\frac{1}{2}$ m's we obtain the M^2 plot
Meson	Decay	$\mathcal{B}[10]$	Rep. number of hockgrounds
		(07)	A number of backgrounds
	mode	(%)	<u>π^0, and η vetoes and appear</u>
D^0	$K^{-}\pi^{+}$	$3.891 {\pm} 0.077$	$T_{K_{S}^{0}}\pi^{\mathbb{D}}$ and $\eta\pi^{0}$ appear as pe
	$\overline{K}^0 \pi^0$	$2.380{\pm}0.092$	$(C - \log \pi) \log T_{L} \propto K_L^0 \pi^0, \pi^0 \pi^0$ peak
	$\overline{K}^0_{\ \ 0}\eta$	$0.962 {\pm} 0.060$	$\frac{C}{\sqrt{2}}\sin(\theta_{\eta}+\phi_{1})\frac{K^{*0}\sigma_{E}}{\text{these backgrounds are shown}} \sup_{\eta \to \infty} \frac{1}{2} \sum_{\mu=0}^{\infty} 1$
	$\overline{K}^0\eta'$	$1.900 {\pm} 0.108$	$-\frac{C}{\sqrt{2}}\cos(\theta_{\eta}+\phi_{1})$ grounds also (happend ϕ_{0}) the right
D^+	$\overline{K}^0 \pi^+$	$3.074 {\pm} 0.097$	$C_{\rm c}$ To determine the signal and $C_{\rm c}$ the signal region 0
D_s^+	$\overline{K}^0 K^+$	$2.98{\pm}0.17$	Cand Ahigh sidebands: -0.1
	$\pi^+\eta$	$1.84{\pm}0.15$	$T\cos(\theta_{\eta}+\phi_{1})+2\sqrt{2}e\sqrt{\sin(\theta_{r}+a\phi_{k})}$ rounds
	$\pi^+\eta'$	$3.95 {\pm} 0.34$	$\frac{T\sin(\theta_{\eta} + \phi_1) - \mathcal{P}\sqrt{2}AK_{\text{GOTS}}^0(\theta_{\eta} - \theta_1)}{T\cos(\theta_{\eta} - \theta_1)} \to \frac{\pi^0}{K_0^0}$
			$\xrightarrow{\text{backgrounds. For } D^{\circ} K_{S}^{\circ} $

Monte Carlo simulation to de

 $T = 3.003 \pm 0.023$ $C = (2.565 \pm 0.030) \exp \left[i(-152.\text{E1} \pm 0.57)^{\circ}\right]$ $E = (1.372 \pm 0.036) \exp \left[i(123.625 \pm 125)^{\circ}\right]$ $A = (0.452 \pm 0.058) \exp \left[i(19^{+15}_{-14})^{\circ}_{\text{B}}\right]^{250}$ Hiagrams. All are implied C Charm Decays FPCP 2010, Tor the second second

Applying the diagrammatic approach to SCS

• Using the results from the CF analysis to predict SCS decay rates results in reasonable qualitative agreement with some notable exceptions.

Meson	Decay	$\mathcal{B}[1]$	Predicted	$\mathcal{B}(10^{-3})$
	mode	(10^{-3})	T < C	T > C
D^0	$\pi^+\pi^-$	1.45 ± 0.05	2.24	2.24
	$\pi^0\pi^0$	0.81 ± 0.05	1.36	1.35
	K^+K^-	4.07 ± 0.10	1.92	1.93
	$K^0 \overline{K}^0$	0.32 ± 0.02	0	0
D^+	$\pi^+\pi^0$	1.18 ± 0.06	0.88	0.89
	$K^+ \overline{K}^0$	6.12 ± 0.22	0.73	6.15
D_s^+	$\pi^+ K^0$	2.52 ± 0.27	0.37	3.08
	$\pi^0 K^+$	0.62 ± 0.23	0.86	0.85

 For decays involving η or η', there is some indication of the presence of an additional contribution from the singlet-annihilation diagram:

PhysRevD.81.014026 2010

1st observation and SU(3) test

U-spin and $D^{\circ} \rightarrow K_{S,L} \pi^{\circ}$

*U-spin: swap d \leftrightarrow s quarks, important e.g. for extracting γ from B_S \rightarrow KK, B_d \rightarrow ππ

• $\Gamma(D^{\circ} \rightarrow K_{S}\pi^{\circ}) \neq \Gamma(D^{\circ} \rightarrow K_{L}\pi^{\circ})$

I. Bigi and H. Yamamoto, Physics Letters 349 (1995) 363-366

Jonas Rademacker

Towakds Pretision Measurements

- Challenging: Invisible K_L, difficult π° .
- CLEO-c:
 - $e+e- \rightarrow \psi(3770) \rightarrow DD$

100% of beam energy converted to DD pair \Rightarrow kinematic constraints.

• Extremely clean environment, good calorimeter

CLEAN-C

 $\psi(3770) \rightarrow D^{0}(K_{S}\pi^{+}\pi^{-})\bar{D}^{0}(K^{+}\pi^{-})$

$D^{o} \rightarrow K_{L,S} \pi^{0}$, at CLEO-c

- Clean missing mass-squared peak at $m^{2}_{K^{\circ}} = 0.28 GeV^{2}$
- Lines: MC simulation. Crosses: Data.
- Result

$$\frac{\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{S}}\pi^{\mathsf{0}}\right)-\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{L}}\pi^{\mathsf{0}}\right)}{\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{S}}\pi^{\mathsf{0}}\right)+\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{L}}\pi^{\mathsf{0}}\right)}=0.108\pm0.025\pm0.024$$

In good agreement with U-spin prediction of $2\tan^2\theta = 0.109$

281/pb at CLEO: PRL **100**, 091801 (2008)

First Observation of $D_{s}^{+} \rightarrow pn$

- Only baryonic state kinematically accessible to D° D⁺ D_s⁺
- Virtually background-free reconstruction at CLEO-c
- First observation of meson → 2 baryons plus nothing else.

 $\mathcal{B}(D_s^+ \to p\bar{n}) = (1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3}$

Inclusive D_S BF

- $e^+e^- \rightarrow D_S^{+*} D_S^-$
- Fully reconstruct one Ds as tag
- Reconstruction of desired decay product on other side.

Inclusive reconstruction:

Inclusive D_s BF Results

					prediction based on excl.
Mode	$\operatorname{Yield}(\%)$	K_L^0 Mode	$\operatorname{Yield}(\%)$	$\mathcal{B}(PDG)(\%)$	rates [1]
$D_s^+ \to \pi^+ X$	$119.3 \pm 1.2 \pm 0.7$				125.5 ±11.1
$D_s^+ \to \pi^- X$	$43.2 \pm 0.9 \pm 0.3$				46.6±6.8
$D_s^+ \to \pi^0 X$	$123.4 \pm 3.8 \pm 5.3$				112.5 ± 8.0
$D_s^+ \to K^+ X$	$28.9\pm0.6\pm0.3$			$20 \ ^{+}_{-} \ ^{18}_{14}$	27.3 ± 1.4
$D_s^+ \to K^- X$	$18.7 \pm 0.5 \pm 0.2$			$13 \ ^+_{-} \ ^{14}_{12}$	18.4 ± 0.7
$D_s^+ \to \eta X$	$29.9 \pm 2.2 \pm 1.7$				32.7 ± 2.9
$D_s^+ \to \eta' X$	$11.7 \pm 1.7 \pm 0.7$				18.2 ± 2.1
$D_s^+ \to \phi X$	$15.7 \pm 0.8 \pm 0.6$				19.2 ± 2.4
$D_s^+ \to \omega X$	$6.1 \pm 1.4 \pm 0.3$				0.8±0.1
$D_s^+ \to f_0(980)X, f_0(980) \to \pi^+$	$\pi^{-} < 1.3\% (90\% \text{ CL})$				_
$D_s^+ \to K_S^0 X$	$19.0 \pm 1.0 \pm 0.4$ Å	$D_s^+ \to K_L^0 X$	15.6 ± 2.0	20 ± 14	K°: 18.4±2.0, K° 22.7± 2.2
$D_s^+ \rightarrow K_S^0 K_S^0 X$	$1.7 \pm 0.3 \pm 0.1$ Å	$D_s^+ \to K_L^{\overline{0}} K_S^0 X$	5.0 ± 1.0	l.	
$D_s^+ \rightarrow K_S^0 K^+ X$	$5.8 \pm 0.5 \pm 0.1$ Å	$D_s^+ \to K_L^0 K^+ X$	5.2 ± 0.7		
$D_s^+ \to K_S^0 K^- X$	$1.9 \pm 0.4 \pm 0.1$ Å	$D_s^+ \to K_L^{\overline{0}} K^- X$	1.9 ± 0.3		
$D_s^+ \to K^+ K^- X$	$15.8 \pm 0.6 \pm 0.3$				
$D_s^+ \to K^+ K^+ X$	< 0.26% (90% CL)				
$D_s^+ \rightarrow K^- K^- X$	< 0.06% (90% CL)				

CLEO inclusive Ds result: <u>PhysRevD.79.112008 (2009)</u> (arXiv:0904.2417), [1] Prediction: Gronau and Rosner: <u>PhysRevD.79.074022 (2009)</u>

$\begin{array}{ccc} & - & 14 \\ & 13 & + & 14 \\ & 12 \\ \text{Inclusive D}_{s} \, \text{BF Results} \end{array}$

CLEO inclusive Ds result: <u>PhysRevD.79.112008 (2009)</u> (arXiv:0904.2417), [1] Prediction Gronau and Rosner: <u>PhysRevD.79.074022 (2009)</u>

Jonas Rademacker

- Most incl. rates^[1] accounted for by known excl. ones^[2], except, at first: $\Sigma_i \Gamma_{excl} (D_S \rightarrow \omega X_i) \sim 0.13 \times \Gamma_{incl} (D_S \rightarrow \omega X)$
- A closer look at exclusive $D_S \rightarrow \omega X$ BR:

Mode	$\mathcal{B}_{ ext{mode}}(\%)$
$D_s^+ \to \pi^+ \omega$	$0.21 \pm 0.09 \pm 0.01$
$D_s^+ \to \pi^+ \pi^0 \omega$	$2.78 \pm 0.65 \pm 0.25$
$D_s^+ \to \pi^+ \pi^+ \pi^- \omega$	$1.58 \pm 0.45 \pm 0.09$
$D_s^+ o \pi^+ \eta \omega$	$0.85 \pm 0.54 \pm 0.06$
	< 2.13 (90% CL)
$D_s^+ \to K^+ \omega$	< 0.24 (90% CL)
$D_s^+ \to K^+ \pi^0 \omega$	< 0.82 (90% CL)
$D_s^+ \to K^+ \pi^+ \pi^- \omega$	< 0.54 (90% CL)
$D_s^+ \to K^+ \eta \omega$	< 0.79 (90% CL)

- Most incl. rates^[1] accounted for by known excl. ones^[2], except, at first: $\Sigma_i \Gamma_{excl} (D_S \rightarrow \omega X_i) \sim 0.13 \times \Gamma_{incl} (D_S \rightarrow \omega X)$
- A closer look at exclusive $D_S \rightarrow \omega X$ BR:

- Most incl. rates^[1] accounted for by known excl. ones^[2], except, at first: $\Sigma_i \Gamma_{excl} (D_S \rightarrow \omega X_i) \sim 0.13 \times \Gamma_{incl} (D_S \rightarrow \omega X)$
- A closer look at exclusive $D_S \rightarrow \omega X$ BR:

- Most incl. rates^[1] accounted for by known excl. ones^[2], except, at first: $\Sigma_i \Gamma_{excl} (D_S \rightarrow \omega X_i) \sim 0.13 \times \Gamma_{incl} (D_S \rightarrow \omega X)$
- A closer look at exclusive $D_S \rightarrow \omega X$ BR:

Dalitz Analyses

• Kinematics of 3-body decay $D \rightarrow A, B, C$ fully described by

 $D^+ \rightarrow K^+ K^- \pi^+$

 $D_s^+ \rightarrow K^+ K^- \pi^+$

З

15

 $m^2_{AB} \equiv (p_A + p_B)^2$

 $m^2_{BC} \equiv (p_B + p_C)^2.$

• Phase-space is flat in m²_{AB},m²_{BC}

 $m^{2}(K^{-}\pi^{+}) (GeV/C^{2})^{2}$

1.5

Strength: Access to magnitudes AND phases of amplitudes.

Recent Results: $D_S^+ \rightarrow K^-K^+\pi^+$ at CLEO

- Isobar fit. Good agreement with previous E687 (701 event) fit^[1].
- Get much-improved fit to CLEO-c data with additional KK S-wave contribution.
- Best results by adding an f₀(1370) resonance.

12k $D_S^+ \rightarrow K^- K^+ \pi^+$ events at CLEO-c CLEO: PRD 79, 072008 (2009), arXiv:0903.1301

[1] E687: P.L. Frabetti et al. (E687 Collaboration), Phys. Lett., B351, 591 (1995) see also unpublished FOCUS result: A.M. Rahimi, FERMILAB-THESIS-2000-13 and S. Malvezzi, AIP Conf. Proc. 549, 569 (2002)

• Each resonance = Breit Wigner lineshape (or similar) times factors accounting for spin.

- Each resonance = Breit Wigner lineshape (or similar) times factors accounting for spin.
- Popular amongst experimentalists, less so amongst theorists: violates unitarity. OK as long as resonances are reasonably narrow, don't overlap too much.

- Each resonance = Breit Wigner lineshape (or similar) times factors accounting for spin.
- Popular amongst experimentalists, less so amongst theorists: violates unitarity. OK as long as resonances are reasonably narrow, don't overlap too much.
- Alternatives exist, e.g. K-matrix formalism, which respects unitarity.

- Each resonance = Breit Wigner lineshape (or similar) times factors accounting for spin.
- Popular amongst experimentalists, less so amongst theorists: violates unitarity. OK as long as resonances are reasonably narrow, don't overlap too much.
- Alternatives exist, e.g. K-matrix formalism, which respects unitarity.
- General consensus: Isobar OK for (relatively narrow) P, D wave resonances, but problematic for (usually very broad) S-wave.

- Each resonance = Breit Wigner lineshape (or similar) times factors accounting for spin.
- Popular amongst experimentalists, less so amongst theorists: violates unitarity. OK as long as resonances are reasonably narrow, don't overlap too much.
- Alternatives exist, e.g. K-matrix formalism, which respects unitarity.
- General consensus: Isobar OK for (relatively narrow) P, D wave resonances, but problematic for (usually very broad) S-wave.
- Isobar S-wave usually modelled by a "non-resonant" component, plus, occasionally, $\sigma \rightarrow \pi\pi$ and $\kappa \rightarrow K\pi$ resonances (rather controversial).

E791 isobar analysis: <u>Phys. Rev. Lett 89, 121801 (2002)</u>; *E791 model indep analysis:Phys. Rev. D73, 032004 (2006); **CLEO: <u>PhysRevD.78.052001 (2008)</u>; FOCUS K-matrix <u>Phys Lett B. 653,1,11 (2007)</u>, model indep.: Phys.Lett.B681:14-21,2009

Jonas Rademacker

PCP 2010, Turino	3540108-015	18
------------------	-------------	----

 $$ $$ $$ $-2 \pi^{+}\pi^{+}$ S wave in ()MIPWA	

$D^+ \rightarrow K^- \pi^+ \pi^+$ (ca 80% K π S-wave)

• Use P, D wave as "interferometer" to extract K-π S-wave's magnitude and phase in a model independent way

E791 isobar analysis: Phys. Rev. Lett 89, 121801 (2002); *E791 model indep analysis: Phys. Rev. D73, 032004 (2006); **CLEO: PhysRevD.78.052001 (2008); FOCUS K-matrix Phys Lett B. 653,1,11 (2007), model indep.: Phys.Lett.B681:14-21,2009

Jonas F	Rademacker
---------	------------

/S	FF	PCP 2010, Turino	3540108-015	-
_				
	$$ $$ $-2\pi^{+}\pi^{+}$ S wave in OMIPWA			
_				

- Use P, D wave as "interferometer" to extract K-π S-wave's magnitude and phase in a model independent way
- Pioneered in by E791, recent results by FOCUS and CLEO (largest statistics by CLEO, 140k evts, shown on right).

E791 isobar analysis: <u>Phys. Rev. Lett 89, 121801 (2002</u>); *E791 model indep analysis:Phys. Rev. D73, 032004 (2006); **CLEO: <u>PhysRevD.78.052001 (2008</u>); FOCUS K-matrix <u>Phys Lett B. 653,1,11 (2007)</u>, model indep.: Phys.Lett.B681:14-21,2009

Jonas Rademacker	
------------------	--

|--|

	•

- Use P, D wave as "interferometer" to extract K-π S-wave's magnitude and phase in a model independent way
- Pioneered in by E791, recent results by FOCUS and CLEO (largest statistics by CLEO, 140k evts, shown on right).
- Result: binned magnitudes and phases.
 Plot compares model-indep. with isobar (incl κ)

E791 isobar analysis: <u>Phys. Rev. Lett 89, 121801 (2002</u>); *E791 model indep analysis:Phys. Rev. D73, 032004 (2006); **CLEO: <u>PhysRevD.78.052001 (2008</u>); FOCUS K-matrix <u>Phys Lett B. 653,1,11 (2007)</u>, model indep.: Phys.Lett.B681:14-21,2009

Jonas Rademacker

:
:

- Use P, D wave as "interferometer" to extract K-π S-wave's magnitude and phase in a model independent way
- Pioneered in by E791, recent results by FOCUS and CLEO (largest statistics by CLEO, 140k evts, shown on right).
- Result: binned magnitudes and phases.
 Plot compares model-indep. with isobar (incl κ)
- Also: Found that fit significantly improves when adding a I=2 π⁺π⁺ Swave component.

Jonas Rademacker

E791 isobar analysis: <u>Phys. Rev. Lett 89, 121801 (2002</u>); *E791 model indep analysis: Phys. Rev. D73, 032004 (2006); **CLEO: <u>PhysRevD.78.052001 (2008</u>); FOCUS K-matrix <u>Phys Lett B. 653,1,11 (2007)</u>, model indep.: Phys.Lett.B681:14-21,2009

Hadronic Charm Decays

--- I=2 $\pi^+\pi^+$ S wave in QMIPWA

FPCP 2010, Turino 3540108-015

FOCUS K π S-wave in D⁺ \rightarrow K⁻ π ⁺ π ⁺

Focus recently re-analysed their data using a the modelindependent analysis (57k evts, 1/3 of CLEO-c). Below: Comparison of FOCUS' three S-wave fits

• Dominated by S-wave (fit fraction 83%).

- BaBar: model-independent analysis^[1] of S-wave component. Result compatible with FOCUS (K-matrix)^[2] and E791 (isobar)^[3] analyses.
- Many more results in paper.

[1] Method pioneered by E791: Phys. Rev. D 73, 032004 (2006).
 [2] E791: Phys. Rev. Lett. 86, 765 (2001)
 [3] FOCUS: Phys. Lett. B 585, 200 (2004)

Jonas Rademacker

CLEO-C Towards Precision Measurements

- Threshold production of correlated DD. ρ^+
- D mesons must have opposite CP and flavour.
- Gives access to different D-Dbar superpositions, and thus access to phases. E.g.:

"tag" D	signal D rate
CP+, eg KK	$\Gamma = (A_D - \overline{A}_D) / \sqrt{2} ^2$
Flavour, e.g. K ⁻ e ⁺ $\nu_{\rm e}$	$\Gamma = A_D ^2$

CLEO-C Towards Precision Measurements

Exploiting Quantum Correlations at CLEO-c

• CP-tagged rates

$$\sim$$
 (1 ± 2 $r_D^{K\pi} \cos \delta_D^{K\pi} \pm y$)

New kids on the block

BES-III: Correllated D-Dbar pairs. To collect ~20×CLEO-c statistics. (already collected ca 1×CLEO-c) LHCb: Unprecedented Statistics Franz Muheim $D^- \rightarrow K^-\pi^+\pi^-$ in LHCb's first 0.8/nb = 0.000008/fb.

First run (1-2 years): 1/fb. Expect huge charm samples.

Summary

- In this talk: A lot of new branching fractions, including recent results from CLEO-c's full D_s dataset
 Several new modes
 SU(3)_F and U-spin tests
 Dalitz analyses to study light resonances
 Correlated D-Dbar pairs to measure phases.
- Dalitz analyses in charm are experiencing a renaissance as an important tool in charm and B physics, but we don't really understand them. What are those S-wave contributions? (Can we develop accurate, physically motivated models?)
- Expect lots of new data from LHCb (unprecedented statistics) and BES-III (charm threshold, ca 20x CLEO statistics); also, by far not all B-factory, CLEO and CDF charm data fully exploited.

Backup

D->Kpipi Dalitz fit comparison

TABLE II: Decay fractions (%) and phases, in degress, from the MIPWA Dalitz plot fit compared to E791 and CLEO-c.

mode	FOCUS MIPWA	E791	CLEO-c	
$K^-\pi^+$ S-wave	$80.24 \pm 1.38 \pm 0.23 \pm 0.25 \pm 0.26$	78.6 ± 2.3	83.8 ± 3.8	
$\overline{K}_0^*(1430)\pi^+$	- -	- -	13.3 ± 0.62 51 (fixed)	
$\overline{K}^*(892)^0\pi^+$	$\begin{array}{c} 12.36 {\pm} 0.34 {\pm} 0.19 {\pm} 0.16 {\pm} 0.23 \\ 0 \ ({\rm fixed}) \end{array}$	11.9 ± 2.0 0 (fixed)	$9.88{\pm}0.46\ 0\ { m (fixed)}$	
$\overline{K}^{*}(1680)^{0}\pi^{+}$	$\begin{array}{c} 1.75 {\pm} 0.62 {\pm} 0.24 {\pm} 0.23 {\pm} 0.42 \\ 67 {\pm} 6 {\pm} 2 {\pm} 2 {\pm} 3 \end{array}$	$1.2 \pm 1.2 \\ 43 \pm 17$	$0.20{\pm}0.12$ 113 ${\pm}14$	
$\overline{K}_2^*(1430)\pi^+$	$\begin{array}{c} 0.58 {\pm} 0.1 {\pm} 0.04 {\pm} 0.03 {\pm} 0.04 \\ 336 {\pm} 7 {\pm} 3 {\pm} 2 {\pm} 2 \end{array}$	$0.2 \pm 0.1 \\ -12 \pm 29$	$0.20{\pm}0.04 \\ 15{\pm}9$	

Jonas Rademacker

Conclusion

- Crucial for B physics, especially for a high-precision measurement of CKM angle γ in B decays.
- Properties of the charm system such as mixing and CP violation. CPV in charm is highly sensitive to New Physics.
- Decay amplitudes and rates: important parameters that need to be measured, and provide a window to low-energy QCD, its symmetries (Isospin, U-spin, SU(3)-flavour, ...) and how they are broken.
- Properties of light meson resonances important in its own right, but could become very revelant for precision charm and B physics Dalitz analyses.

 ↓ ↓ K*ρa₁ f (980)... σ(?)κ(?)...

Conclusion

- Crucial for B physics, especially for a high-precision measurement of CKM angle γ in B decays.
- Properties of the charm system such as mixing and CP violation. CPV in charm is highly sensitive to New Physics.
- Decay amplitudes and rates: important parameters that need to be measured, and provide a window to low-energy QCD, its symmetries (Isospin, U-spin, SU(3)-flavour, ...) and how they are broken.
- Properties of light meson resonances important in its own right, but could become very revelant for precision charm
 and B physics Dalitz analyses.

K*pa

CLEO-c's quantum correlations as input for others

• Measure phase difference between $D \rightarrow K^+\pi^-$ and $D \rightarrow K^+\pi^-$, $\delta^{K\pi}$. Needed for extracting the charm mixing parameters x, y from time-dependent analyses using $D \rightarrow K^+\pi^-$ which are sensitive to x', y':

 $x' = x \cos(\delta^{K\pi}) + y \sin(\delta^{K\pi})$

 $y' = y \cos(\delta^{\kappa \pi}) - x \sin(\delta^{\kappa \pi})$

- Same for $D \rightarrow K^+\pi^-\pi^0$.
- Phase information from CLEO-c also provides important input to extracting the CPV phase γ from B[±]→DK[±] modes with various final states of the D, such as K_Sππ, K_SKK, Kπππ (Chris Thomas' presentation).

 $D_S^+ \rightarrow K_S \pi^+ (\pi^- \pi^+)$

$$\begin{aligned} & \frac{\Gamma\left(\mathsf{D}_{\mathsf{S}}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\pi^{+}\right)}{\Gamma\left(\mathsf{D}_{\mathsf{S}}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\mathsf{K}^{+}\right)} = 0.104 \pm 0.024 \pm 0.013 \\ & \frac{\Gamma\left(\mathsf{D}_{\mathsf{S}}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\mathsf{K}^{+}\right)}{\Gamma\left(\mathsf{D}_{\mathsf{S}}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\pi^{+}\pi^{-}\pi^{+}\right)} = 0.18 \pm 0.04 \pm 0.05 \end{aligned}$$

D_S⁺→K_Sπ⁺ confirmed by CLEO & BELLE $\Gamma(D_{S}^{+} \to K_{S}^{0}\pi^{+}) = (0.1263 \pm 0.0106 \pm 0.0026 \pm 0.0073) \%$ CLEO-C PhysRevD.81.052013 (2009) $\Gamma(D_{S}^{+} \to K_{S}^{0}\pi^{+}) = (0.120 \pm 0.009) \%$ BELLE PhysRevD.80.111101 (2009)

BELLE also use $D_s^+ \rightarrow K_S K^+$, $D_s^+ \rightarrow K_S \pi^+$ for CPV measurement^{*} - see Anze Zupanc's talk <u>*)PhysRevLett.104.181602 (2010)</u>

1st Observation of $D_{s^+} \rightarrow K^+ K^+ \pi^-$ by BELLE

- BELLE made the first observation of DCS D_s⁺→K⁺K⁺π⁻. Use CF D_s⁺→K⁺K⁺π⁻. as normalisation.
- Repeat measurement with SU(3)-flavour related D+ modes.

 $\mathcal{N}_{\mathrm{signal}}$

 2637.7 ± 84.4

 482702 ± 727

 281.4 ± 33.8

 118127 ± 452

$$\frac{\mathcal{B}(D_s^+ \to K^+ K^+ \pi^-)}{\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)} \frac{\mathcal{B}(D^+ \to K^+ \pi^+ \pi^-)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)} = \tan^8 \theta_{C_s}$$

H. J. Lipkin, Nucl. Phys. B, Proc. Suppl. 115, 117 (2003).

Phys. Rev. Lett. 102, 221802 (2009)

Decay mode

 $D^+ \rightarrow K^+ \pi^+ \pi^-$

 $D^+ \rightarrow K^- \pi^+ \pi^+$

 $D_s^+ \rightarrow K^+ K^+ \pi^-$

 $D_s^+ \rightarrow K^+ K^- \pi^+$

 \mathcal{B}_{rel} (%)

 $0.569 \pm 0.018 \pm 0.014$

100

 $0.229 \pm 0.028 \pm 0.012$

1st Observation of $D_{s^+} \rightarrow K^+K^+\pi^-$ by BELLE

- BELLE made the first observation of DCS D_s⁺→K⁺K⁺π⁻. Use CF D_s⁺→K⁺K⁺π⁻. as normalisation.
- Repeat measurement with SU(3)-flavour related D+ modes.

Decay mode	$\mathcal{N}_{ ext{signal}}$	\mathcal{B}_{rel} (%)
$D^+ \rightarrow K^+ \pi^+ \pi^-$	2637.7 ± 84.4	$0.569 \pm 0.018 \pm 0.014$
$D^+ \rightarrow K^- \pi^+ \pi^+$	482702 ± 727	100
$D_s^+ \rightarrow K^+ K^+ \pi^-$	281.4 ± 33.8	$0.229 \pm 0.028 \pm 0.012$
$D_s^+ \rightarrow K^+ K^- \pi^+$	118127 ± 452	100

$$\frac{\mathcal{B}(D_s^+ \to K^+ K^+ \pi^-)}{\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)} \frac{\mathcal{B}(D^+ \to K^+ \pi^+ \pi^-)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)}$$

$$(1.57 \pm 0.21) \tan^8 \theta_C,$$

Phys. Rev. Lett. 102, 221802 (2009)

Recent first observations at the B factories

SU(3) tests

	Expect from SU(3)	get
$\frac{\Gamma \left(D^{+} \to K_{S} \pi^{+} \right) - \Gamma \left(D^{+} \to K_{L} \pi^{+} \right)}{\Gamma \left(D^{+} \to K_{S} \pi^{+} \right) + \Gamma \left(D^{+} \to K_{L} \pi^{+} \right)}$	≈0.4 DN. Gao, Phys. Lett. B 645 , 59 (2007)	0.022±0.016±0.018 281/pb at CLEO: PRL 100 , 091801 (2008)
$\frac{\Gamma \left(D^{+} \to K^{+} K^{+} \pi^{-}\right)}{\Gamma \left(D^{+} \to K^{+} K^{-} \pi^{+}\right)} \frac{\Gamma \left(D^{+} \to K^{+} \pi^{+} \pi^{-}\right)}{\Gamma \left(D^{+} \to K^{-} \pi^{+} \pi^{+}\right)}$	tan⁸θ H. J. Lipkin, Nucl. Phys. B, Proc. Suppl. 115, 117 (2003).	(1.57 ± 0.21)×tan ⁸ θ BELLE: Phys. Rev. Lett. 102, 221802 (2009)

SU(3) tests

1st Observation of D_s⁺→K⁺K⁺π⁻ (BELLE 2009)

Prospects for direct CPV

- Example: $D^{\circ} \rightarrow K^{+}K^{-}$
 - BaBar 2008: (0.00 ± 0.34 ± 0.13)%
 - BELLE 2008: (-0.43 ± 0.30 ± 0.11)%
 - World average (HFAG): (+0.22 ± 0.37)%
- CDF has obtained its result of $(+2.0 \pm 1.2 \pm 0.6)\%$ with only 2% of its current data set. CDF could beat world stat precision now.
- LHCb expects stat precision of ~0.1% in 1/fb

 $D^{\circ} \rightarrow V \eta$

Mode Theory B.F. /10 ⁻³ B. Bhattacharya, J. L. Rosner, arXiv: 0812.3167v1 [hep-ph] (2008)		Experiment previously ^[1]	BaBar Results (pr April 09 ^{[2}	eliminary)	
	Sol A	Sol B		BF / 10 ⁻³	yield
D°→φη	0.93 ± 0.09	1.4 ± 0.1	0.14 ± 0.04	0.21 ± 0.01 ± 0.02	513 ± 26
D°→ωη	1.4 ± 0.09	1.27 ± 0.09		2.21 ± 0.08 ± 0.22	4450 ± 103
D° → K*° η	0.038 ± 0.004	0.037 ± 0.004		0.048 ± 0.010 ± 0.004	117 ± 37

[1] BELLE: Phys.Rev.Lett.92:101803,2004

[2] Caitlin Malone on behalf of the BaBar Collaboration at APS April Meeting 2009

R.H. Dalitz, Philos. Mag. 44, 1068 (1953)

VMD, $D^{\circ} \rightarrow V\gamma$ and $D^{\circ} \rightarrow V\rho^{\circ}$

• Dominated by long-distance effects. Difficult to calculate.

[1] G. Burdman, E. Golowich, J. L. Hewett, and S. Pakvasa, Phys. Rev., 6383 (1995)

- Find good agreement with E687 model parameters.
- Get much-improved fit to our data with additional KK S-wave contribution.
- Tried many options. Best results with f₀(1370)

P.L. Frabetti et al. (E687 Collaboration), Phys. Lett., B351, 591 (1995)
 [4]A.M. Rahimi, FERMILAB-THESIS-2000-13
 [3] S. Malvezzi, AIP Conf. Proc. 549, 569 (2002)

Theory of $D_{s}^{+} \rightarrow pn$

- Long Distance $\mathcal{B}(D_s^+ \to p\bar{n}) \approx \left(0.8^{+2.4}_{-0.6}\right) \times 10^{-3}$
- Measured $\mathcal{B}(D_s^+ \to p\bar{n}) = (1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3}$

Chen, Cheng, Hsiao: <u>Phys.Lett.B663:326-329,2008</u>

Absolute Ds→KKπ BF at CLEO-c

B(Ds → K⁻ K⁺ π^+) = (5.50 ± 0.23 ± 0.16)%

Phys.Rev.Lett.100:161804,2008 (arxiv)

Jonas Rademacker

$D_S^+ \rightarrow \pi^- \pi^+ \pi^+$

- $D_{S^+} \rightarrow (\pi^+\pi^-)_{S\text{-wave}} \pi^+$ dominates.
- Model-independent S-wave fit compatible with f₀(980) resonance.
- Also with FOCUS's K-matrix and E791's isobar fit
- Signs of something going on near f_0 (1370), $f_0(1500)$.
- Large D-wave component with f₂(1270)

Fit Fractions

Decay Mode	Decay fraction $(\%)$
$f_2(1270)\pi^+$	$10.1 \pm 1.5 \pm 1.1$
$ ho(770)\pi^+$	$1.8 {\pm} 0.5 {\pm} 1.0$
$ ho(1450)\pi^+$	$2.3{\pm}0.8{\pm}1.7$
\mathcal{S} -wave	$83.0 \pm 0.9 \pm 1.9$
Total	$97.2 \pm 3.7 \pm 3.8$
χ^2/NDF	$\frac{437}{422-64} = 1.2$

BaBar: arXiv:0808.0971v3 [hep-ex], submitted to PRD

$D_S^+ \rightarrow \pi^- \pi^+ \pi^+$ Model independent S-wave parameterisation

S-wave

- S-wave resonances $\sigma \rightarrow \pi^+\pi^-$, $\kappa \rightarrow K^+\pi^-$: are they real?
 - needed in isobar fits to $D^+ \rightarrow \pi^+ \pi^- \pi^+$, $D^0 \rightarrow K_s \pi^+ \pi^-$, $D^+ \rightarrow K^- \pi^+ \pi^+$
 - unclear if compatible with LASS scattering data
 - not required in $D^0 \rightarrow K^-\pi^+\pi^0$, $D^0 \rightarrow \pi^+\pi^-\pi^0$ isobar fits (BaBar, <u>PhysRevD.74.091102</u>).
- K-matrix Models don't explicitly require σ, κ.

Jonas Rademacker

Hadronic Charm decays

- Crucial for B physics, especially for a high-precision measurement of CKM angle γ in B decays.
- Properties of the charm system such as mixing and CP violation. CPV in charm is highly sensitive to New Physics.
- Decay amplitudes and rates: important parameters that need to be measured, and provide a window to low-energy QCD, its symmetries (Isospin, U-spin, SU(3)-flavour, ...) and how they are broken.
- Properties of light meson resonances important in its own right, but could become very revelant for precision charm and B physics Dalitz analyses.

B ↓ D ↓ K*ρa₁ f (980)... σ(?)κ(?)...

Hadronic Charm decays

- Crucial for B physics, especially for a high-precision measurement of CKM angle γ in B decays.
- Properties of the charm system such as mixing and CP violation. CPV in charm is highly sensitive to New Physics.
- Decay amplitudes and rates: important parameters that need to be measured, and provide a window to low-energy QCD, its symmetries (Isospin, U-spin, SU(3)-flavour, ...) and how they are broken.
- Properties of light meson resonances important in its own right, but could become very revelant for precision charm
 and B physics Dalitz analyses.

K*pa

BR(D⁺(s) \rightarrow K_SK⁺), BR(D⁺(s) \rightarrow K_S π ⁺) at BELLE

• Precise Ratio of BR recently measured at BELLE (using CF modes D⁺->K_Sπ⁺, D_s⁺→K_SK⁺ for normalisation) $\mathcal{B}(D^+ \to K_S^0 K^+) = (2.75 \pm 0.08) \times 10^{-3}$

$$\mathcal{B}(D_s^+ \to K_S^0 \pi^+) = (1.20 \pm 0.09) \times 10^{-3}$$

• Ratio not what you'd expect from SU(3).

$$\mathcal{B}(D^+ \rightarrow K^0_S K^+) / \mathcal{B}(D^+_s \rightarrow K^0_S \pi^+) = 2.29 \pm 0.18$$

 D_s⁺→K_SK⁺, D_s⁺→K_Sπ⁺ also used for CPV measurement - see Anze Zupanc's talk
 PhysRevLett.104.181602 (2010)

PhysRevD.80.111101 (2009)

