Measurements of ϕ_1/β

K. Sumisawa (KEK)

Flavor Physics and CP Violation 2010, May 25, 2010, Torino, Italy,

Time-dependent CP Violation in B⁰ decays

KM ansatz: CPV is due to a complex phase in the quark mixing matrix

$$V_{n=3} = \begin{pmatrix} V_{ud} & V_{us} & \underline{V_{ub}} \\ V_{cd} & V_{cs} & \overline{V_{cb}} \\ \underline{V_{td}} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & \underline{A\lambda^3(\rho - i\eta)} \\ -\lambda & 1 - \lambda^2/2 & \underline{A\lambda^2} \\ \underline{A\lambda^3(1 - \rho - i\eta)} & -A\lambda^2 & 1 \end{pmatrix}$$

B-B mixing

mixing induced CP violation

Time-dependent CP Violation in B⁰ decays

We can measure CPV (asym.) as a function of proper time diff (Δt).

Principle of Measurement in B-factories

- Reconstruct $B \rightarrow f_{CP(b \rightarrow c)}$ decays
- Measure proper-time difference: Δt
- Determine flavor of B_{tag}
- Evaluate *CP* asymmetry from Δt and flavor of B_{tag}

Success of the B-factories

agreement between two experiments

but ambiguities exist.

$J/\psi \; \pi^0$:

constrain penguin contribution in Golden mode(J/ ψ K⁰) without model dependence.

D^{(*)+} D^{(*)-} :

penguin contribution is expected to be small.

b→sqq TCPV

Time-Dependent *CP* asymmetry in B⁰ decays

Many two-body and quasi-two body analyses have been done. Since $\phi \rightarrow K^+K^-$, $f_0 \rightarrow K^+K^-$ and non-resonant contributions overlap invariant mass(as do $\rho^0 \rightarrow \pi^+\pi^-$ and $f_0 \rightarrow \pi^+\pi^-$), recently time-dependent Dalitz analyses have been performed in three-body decays such as $B^0 \rightarrow (K^+K^-)K_S$ and $B^0 \rightarrow (\pi^+\pi^-)K_S$.

Interferences in *B* decays with $K^+K^-K_s$ final state

Dalitz-plot

⇒ distinguish the intermediate states considering interferences

CP asymmetry ($\phi_{1,eff}$, A_{CP}) of $B \rightarrow \phi(1020) \text{ K}_S$ using Time-dependent Dalitz plot analysis in $B \rightarrow \text{K}^+\text{K}^-\text{K}s$

updated Belle result ($B^0 \rightarrow K^+K^-Ks$)

Decay amplitude

Belle 657MBB to be submitted to PRD.

19 free parameters
12: isobar model
6: CPV parameters.
1: α for NR

Multiple solution

4 preferable solutions

Decay mode fractions

Parameter	Solution 1	Solution 2	Solution 3	Solution 4
$f_{f_0 K_S^0}$	26.0 ± 7.4	54.0 ± 9.6	26.4 ± 7.8	68.1 ± 12.3
$f_{\phi K_S^0}$	14.2 ± 1.2	14.5 ± 1.2	14.2 ± 1.2	14.4 ± 1.2
$f_{f_{\mathrm{X}}K_{S}^{0}}$	5.10 ± 1.39	5.89 ± 1.86	39.6 ± 2.6	59.0 ± 3.0
$f_{\chi_{c0}K_S^0}$	3.73 ± 0.74	3.71 ± 0.73	3.68 ± 0.73	4.15 ± 0.79
$f_{(K^+K^-)_{\rm NR}K^0_S}$	138.4 ± 44.8	175.0 ± 52.6	157.4 ± 29.5	48.1 ± 11.7
$f_{(K_{S}^{0}K^{+})_{NR}K^{-}}$	1.65 ± 4.17	21.0 ± 17.3	4.63 ± 6.76	7.87 ± 4.78
$f_{(K_S^0K^-)_{\rm NR}K^+}$	26.0 ± 12.9	78.0 ± 36.2	38.6 ± 18.1	6.27 ± 3.81
$F_{ m tot}$	215.2 ± 47.5	352.0 ± 66.8	284.5 ± 36.3	207.9 ± 18.4

External information from $B^0 \rightarrow \pi^+\pi^- Ks$

•f₀(980)

•B.F.($f_0(980) \rightarrow \pi^+\pi^-$)/B.F.($f_0(980) \rightarrow K^+K^-$) and compare with PDG •solutions with low $f_0(980)$ Ks fraction preferred

•f_x(1500)

•If $f_x(1500)=f_0(1500)$ for both decays

•B.F. $(f_0(1500) \rightarrow \pi^+\pi^-)/B.F.(f_0(1500) \rightarrow K^+K^-)$ and compare with PDG •solutions with low $f_x(1500)Ks$ fraction preferred Solution 1

preferred.

BELLE

fit result (Dalitz plot)

fit result (Δt plot)

Solution 1

Belle 657MBB to be submitted to PRD.

proper time distribution and raw asymmetry plot in $\boldsymbol{\phi}$ mass region

	Solution 1	Solution 2	Solution 3	Solution 4
$\mathcal{A}_{CP}(f_0 K_S^0)$	$-0.30\pm0.29\pm0.11\pm0.09$	$-0.20\pm0.15\pm0.08\pm0.05$	$+0.02\pm0.21\pm0.09\pm0.09$	$-0.18\pm0.14\pm0.08\pm0.06$
$\phi_1^{\text{eff}}(f_0 K_S^0)$	$(31.3 \pm 9.0 \pm 3.4 \pm 4.0)^{\circ}$	$(26.1 \pm 7.0 \pm 2.4 \pm 2.5)^{\circ}$	$(25.6 \pm 7.6 \pm 2.9 \pm 0.8)^{\circ}$	$(26.3 \pm 5.7 \pm 2.4 \pm 5.8)^{\circ}$
$A_{CP}(\phi K_S^0)$	$+0.04 \pm 0.20 \pm 0.10 \pm 0.02$	$+0.08\pm0.18\pm0.10\pm0.03$	$-0.01\pm0.20\pm0.11\pm0.02$	$+0.21\pm0.18\pm0.11\pm0.05$
$\phi_1^{\text{eff}}(\phi K_S^0)$	$(32.2 \pm 9.0 \pm 2.6 \pm 1.4)^{\circ}$	$(26.2 \pm 8.8 \pm 2.7 \pm 1.2)^{\circ}$	$(27.3 \pm 8.6 \pm 2.8 \pm 1.3)^{\circ}$	$(24.3 \pm 8.0 \pm 2.9 \pm 5.2)^{\circ}$

the third error: Dalitz plot model uncertainty

BABAR K⁺K⁻Ks result

BABAR 465MBB arXiv:0808.0700

Name	Solution (1)
$1 A_{CP}(\phi K^0)$	$0.14 \pm 0.19 \pm 0.02$
$2 \beta_{eff}(\phi K_s^0)$	(7.7±7.7 ±0.9)°
$3 A_{CP}(f_0 K_s^0)$	$0.01 \pm 0.26 \pm 0.07$
$4 \ \beta_{eff}(f_0 K_S^0)$	(8.5±7.5 ±1.8)°

Solution 1 $-0.30 \pm 0.29 \pm 0.11 \pm 0.09$ $\mathcal{A}_{CP}(f_0 K_S^0)$ $\phi_1^{\text{eff}}(f_0 K_S^0)$ $(31.3 \pm 9.0 \pm 3.4 \pm 4.0)^{\circ}$ $\mathcal{A}_{CP}(\phi K_S^0)$ $+0.04 \pm 0.20 \pm 0.10 \pm 0.02$ $(32.2 \pm 9.0 \pm 2.6 \pm 1.4)^{\circ}$ $\phi_1^{\text{eff}}(\phi K_S^0)$

-CM	Name	Solution (1)
	$ \frac{1}{2} \frac{A_{CP}(\phi K_{S}^{0})}{\beta_{eff}(\phi K_{S}^{0})} \\ \frac{3}{4} \frac{A_{CP}(f_{0}K_{S}^{0})}{\beta_{eff}(\phi K_{S}^{0})} $	$0.14 \pm 0.19 \pm 0.02$ (7.7±7.7 ±0.9)° 0.01 ± 0.26 ± 0.07
	$4 \beta_{eff}(f_0 K_S^0)$	(8.5±7.5 ±1.8)°

Consistent with the Standard Model prediction at current sensitivity $\phi_{1(b \to cc\bar{s})} = (21.0 \pm 0.9)^{\circ}$

result using $\pi^+\pi^-$ Ks

Summary

• ϕ_1/β = (21.1± 0.9)° in B-factories

•sin2 ϕ_1 from b \rightarrow ccs modes.

•resolve the quadratic ambiguity by measuring $cos2\phi_1$ with Dalitz analysis, etc.

•penguin modes are good probes of new physics.

We need more data.

•Belle is now updating its result with the full data sample.

 $\bullet J/\psi K^0$

•full data: $535M \rightarrow 771MBB$ (factor 1.44)

•improved tracking software: 20% gain for $J/\psi Ks$

•yield : factor 1.61

•ψ(2S)Ks, χ_{c1}Ks, η_cKs, and combined analysis last update with150MBB (657MBB for ψ(2S)Ks)
•(statistical error for sin2φ₁)~0.02
•etc..

backup

Resonances considered in the KsKK signal model

28/38

Signal PDF

$$P(\Delta t, q; s_{+}, s_{-})$$

$$= \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} \Big[(|A|^{2} + |\bar{A}|^{2}) - q \quad (|A|^{2} - |\bar{A}|^{2}) \cos \Delta m_{d} \Delta t$$

$$+ 2 q \quad \text{Im}(\bar{A}A^{*}) \sin \Delta m_{d} \Delta t \Big]$$

Decay amplitude $B^{0:} A = \sum_{r=1}^{7} \underline{a_r} (1 + c_r) e^{i(b_r + d_r)} \cdot f_r(s_+, s_-)$ $\overline{B^{0:}} \overline{A} = \sum_{r=1}^{7} \underline{a_r} (1 - c_r) e^{i(b_r - d_r)} \cdot f_r(s_+, s_-)$ $\Rightarrow 19 \text{ fit parameters}$

- 1. Dalitz amplitude and phases
- 2. *CP*-violating amplitude and phases $(\phi \text{ Ks}, f_0 \text{Ks}, \text{ others})$
- 3. Kinematics (Dalitz plot) α for NR

 $f_{r}(s_{\perp}, s_{\perp})$

Reconstructed $B^0 \rightarrow KsK^+K^-$ candidates

plots for K⁺K⁻Ks

 $A_{CP}(\Delta t)$

∆t (ps)

BABAR K⁺K⁻Ks result

BABAR 465MBB arXiv:0808.0700

Name	Solution (1)	Solution (2)
$1 A_{CP}(\phi K_{S}^{0})$	$0.14 \pm 0.19 \pm 0.02$	0.13 ± 0.18
$2 \beta_{eff}(\phi K_S^0)$	(7.7±7.7 ±0.9)°	(8.?±8.?)°
$3 A_{CP}(f_0 K_s^0)$	$0.01 \pm 0.26 \pm 0.07$	-0.49 ± 0.25
$4 \beta_{eff}(f_0 K_S^0)$	(8.5±7.5 ±1.8)°	(197±11)°

