B Baryon Production and Decays and B Hadron Lifetimes

FPCP 2010 ^{8th} Flavour Physics and CP Violation 2010 May 25 – May 29, 2010

Simone Donati, for the CDF and DO Collaborations University and INFN Pisa

Bottom Baryons (I)

 b-baryons are nice laboratory to understand non-perturbative QCD and potential models

q

Q

- heavy b-quark \rightarrow sizeable simplification in theoretical description
- basic model: light diquark system qq surrounding the heavy b-quark "nucleus" Q
- coupling similar as in hydrogen/helium atom

- Ground states (L=0)

$$J_{qq} = S_{qq} = 0 \implies J = J_{qq} + S_Q = 1/2 \{\Lambda^0_b, \Xi_b^-\}$$

$$J_{qq} = S_{qq} = 1 \implies J = J_{qq} + S_Q = 1/2 \{\Sigma_b, \Xi_b^{'}, \Omega_b\}$$

$$\implies J = J_{qq}^{-1} + S_Q = 3/2 \{\Sigma_b^{*}, \Xi_b^{*}, \Omega_b^{*}\}$$

Bottom Baryons (II)

- This is totally a Tevatron field (b baryons copiously produced)
 - + $\Sigma_{\rm b}^{(*)+}$ and $\Sigma_{\rm b}^{(*)-}$ observed in 2006
 - + Ξ_b^- observed by in 2007
 - + $\Omega_{\rm b}^{-}$ observed in 2008
 - Several analyses involving $\Lambda^{\rm 0}{}_{\rm b}$

CDF and D0 Detectors

Drift Chamber/Silicon detector (R~1.4 m, 1.4 T B Field) Excellent vertex/mass resolution Displaced vertex Trigger Tracker/Muon acceptance: $|\eta|<1$

Fiber Tracker/Silicon detector (R~0.5 m, 2.0 T B Field) Tracker/Muon acceptance: |η|<2

$\Xi_{b}{}^{\text{-}}\!/\Omega_{b}{}^{\text{-}}$ Reconstruction

π

 μ^+

 Ξ_{h}^{-}/Ω_{h}

Primary Vertex

р

Λ

SVX

 Ξ^{-}/Ω^{-}

Search for Ξ_{b}^{-} and Ω_{b}^{-} in the decays

$$\Xi_{b}^{-} \rightarrow J/\psi \Xi^{-}, J/\psi \rightarrow \mu^{+}\mu^{-}, \Xi^{-} \rightarrow \Lambda \pi^{-}$$

 $\Omega_{b}^{-} \rightarrow J/\psi \Omega^{-}, J/\psi \rightarrow \mu^{+}\mu^{-}, \Omega^{-} \rightarrow \Lambda K^{-}$

5-track, 3-vertex kinematic fit

 $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$ constrained to J/ ψ mass

Trajectories constrained to appropriate topologies

Reconstructed Ξ^{-}/Ω^{-} constrained to $\mu^{+}\mu^{-}$ vertex

Long life of the $\Xi^{\scriptscriptstyle -}$ and $\Omega^{\scriptscriptstyle -}$ leaves hits $% \Omega^{\scriptscriptstyle -}$ in

the silicon detector (unique to baryons)

Inclusive Ξ^{-}/Ω^{-} Samples

Base sample is given by

- 1.1077 < **M**(pπ) < 1.1237
- $P_T(\Xi/\Omega) > 2.0$
- Flight($\Lambda/\Xi^{-}/\Omega^{-}$) > 1 cm
- Impact(Ξ^{-}/Ω^{-}) < 3σ
- P(χ²) > 10⁻⁴
- $P(\chi^2)_{used} > P(\chi^2)_{swapped}$
- Veto 1.311<M($\Lambda\pi$)<1.331 for ΛK sample (Ξ^- reflection)

Yields in the J/ ψ sample:

– Ξ⁻: 41,000

– Ω⁻: 3,500

Dashed histograms are WS $\Lambda\pi^{+}/K^{+}$ Shaded are selection and SB region

 $\Xi_{\rm b}^{-}/\Omega_{\rm b}^{-}$ reconstructed signals

Obvious Ξ_{b}^{-} signal when **ct** > 100 μ m

Cluster in the J/ $\psi \ \Omega^{\scriptscriptstyle -}$ around 6.05 GeV/c²

Test of Ω_{b} -significance finds 5.5 σ (with no ct cut)

$\Xi_{b}^{-}/\Omega_{b}^{-}$ Mass Measurements

 $m(\Omega_{b}^{-})$: 6054.4 ± 6.8(stat.) ± 0.9(syst.) MeV/c²

Systematic uncertainty

0.55 MeV from B⁰(K_s) error scale by 80% for kinetic energy in the decay 0.5 MeV from Λ_b resolution treatment (considered largest possible) 0.3 MeV from Ω^- mass

$\Xi_{b}^{-}/\Omega_{b}^{-}$ Lifetime Measurements

Candidates/cm

Binned lifetime fit distributions

- Each bin comes from an independent fit to the mass distribution
- Dashed lines are fit projections

Systematic uncertainty 2 μm from σ^{ct} treatment 5 μm from binning

PRD 80, 072003 (2009)

$$\Xi_{b}^{}\rightarrow J/\psi + \Xi$$

Analysis required data reprocessing to increase reconstruction efficiency on large impact parameter tracks

Ξ_{b}^{-} Observation (II)

Signal Significance:

$$\sqrt{-2\Delta \ln L} = \sqrt{-2\ln\left(\frac{L_B}{L_{S+B}}\right)} = 5.5\sigma$$

Number of events: 15.2 ± 4.4 Mass: 5.774 ± 0.011(stat) GeV Width: 0.037 ± 0.008 GeV

We also measured:

$$R = \frac{\sigma(\Xi_b^-)BR(\Xi_b^- \to J/\psi \Xi^-)}{\sigma(\Lambda_b)BR(\Lambda_b^- \to J/\psi\Lambda)}$$

 $R = 0.28 \pm 0.09 \,(\text{stat}) \,{}^{+0.09}_{-0.08} \,(\text{syst})$

PRL 99, 052001 (2007)

Ω^{-}_{b} mass measurement

Fit:

Unbinned extended log-likelihood fit Gaussian signal, flat background Number of background/signal events are floating parameters

Two likelihood fits are performed: Signal + background hypothesis (L_{s+B}) Only background hypothesis (L_B) We evaluate the significance:

$$\sqrt{-2\Delta \ln L} = \sqrt{-2\ln\left(\frac{L_B}{L_{S+B}}\right)}$$

Significance of the observed signal: 5.4 σ

Number of signal events: 17.8 ± 4.9

Mean of the Gaussian: $6.165 \pm 0.010(stat) \pm 0.013(syst) GeV$

Width of the Gaussian fixed (MC): 0.034 GeV

PRL 101, 232002 (2008)

D0 Mass: 6.165 ± 0.010(stat) ± 0.013(syst) GeV/c²

 $\Delta \mathbf{M} = |\mathbf{M}_{\mathsf{D0}} - \mathbf{M}_{\mathsf{CDF}}| \sim 6\sigma$

- + D0 Λ_b & Ξ_b masses ~ PDG values
- D0 recon. $\Omega_{\rm b}$ mass in MC \sim input
- $\Delta M \sim 10 \text{ xD0} \Omega_b$ mass syst.

• Uncertainties on theoretical predictions for $m(\Omega_b)$ ~50-100 MeV (HQET, Feynman-Hellmann, Non-relativistic lattice QCD)

- + D0 Ω_{b} mass ~ 1.5-2.0 σ > theory
- D0 analysis based on Run 2a detector (no SMT layer-0), same sample used for Ξ_b discovery

• New analysis with 5x data is underway but it requires data reprocessing to open IP cut.

 $m(\Omega_b^-)$: 6054.4 ± 6.8(stat.) ± 0.9(syst.) MeV/c²

2.7 -

Reconstruct $\Sigma_c^{0/++} \rightarrow \Lambda_c^+ \pi^-/\pi^+$ and $\Lambda_c^{*+} \rightarrow \Lambda_c^+ \pi^-\pi^+$ ($\Lambda_c^+ \rightarrow pK\pi$) in the hadronic sample Lifetime, vertex fit, PID, Dalitz structure used in a neural network to extract signal

 $\Sigma_{c}(2455)^{0,++}$ and $\Sigma_{c}(2520)^{0,++}$ Fits

- Use a binned Maximum Likelihood technique
- Signals modeled with convolution of Breit Wigner and detector resolution (from Monte Carlo)
- Phenomenological background functions

- Use Breit Wigner with mass dependent width to model $\Lambda_c(2595)^+ \rightarrow \Sigma_c(2455)^{0/++}\pi^{+/-}$ kinematic threshold - Same procedure as in Phys.Rev.D67:074033 (2003) (tested with CLEO samples of $\approx 110 \Lambda_c(2595)^+$ and $\approx 250 \Lambda_c(2625)^+$ finds $\Lambda_c(2595)^+$ mass $\approx 3 \text{ MeV/c}^2$ lower than previous measurements)

Main systematics due to unknown baryon polarisation and averaging efficiency of unresolved $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \rho_{\pi}^{0} \pi^{-}$ and $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-} \pi^{+} \pi^{-} (nr)$ modes

Main systematics due to unknown baryon polarisation, averaging efficiency of $\Lambda_b^0 \rightarrow \Lambda_c^+ \rho_b^0 \pi$ and $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi_\pi^- \pi^- (nr)$ Limited contribution from Signal/Bck shapes, Cab supp modes, Trigger model, $\Lambda_c^+ res$ structure, $p_T(\Lambda_b^0)$, $\tau(\Lambda_b^0)$ and $\tau(\Lambda_c^+)$

 $\Lambda^0_{\ b} \rightarrow \Sigma_c (2455)^0 \pi^+ \pi^-$

 $\Lambda^{0}_{b} \rightarrow \Lambda^{+}_{c} \rho^{0} \pi^{-} + \Lambda^{0}_{b} \rightarrow \Lambda^{+}_{c} \pi^{-} \pi^{+} \pi^{-} (nr)$

We apply veto on all the resonant decay modes We do not separate the two decay modes and we measure the sum of Branching Fractions

CDF-Public Note 10001

 $\frac{\mathsf{BR}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \rho^{0} \pi^{-} + \Lambda_{c}^{+} \pi^{-} \pi^{+} \pi^{-} (\mathsf{nr}) \to + \Lambda_{c}^{+} \pi^{-} \pi^{+} \pi^{-})}{\mathsf{BR}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \pi^{-} \pi^{+} \pi^{-} (\mathsf{all}))} = (77.3 \pm 3.1 \pm 3.3) \times 10^{-2}$

Analysis Goals

Improve mass measurements

Measure natural widths of $(3/2)^+$ and $(1/2)^+$ states and mass splittings with no theoretical constraints

B Hadron Lifetimes

Spectator model: all B hadrons have the same lifetime Difference due to light quark interactions Expected Hierarchy:

 $\tau(B_u) > \tau (B_d) \sim \tau(B_s) > \tau(\Lambda_b) > \tau(B_c)$

Ratio Predictions (HQE): $\tau(B^+)=1.063\pm0.027 \tau(B_d)$ $\tau(\Lambda_b)=0.88\pm0.05 \tau(B_d)$

Lifetimes important for understanding the interactions of quarks inside hadrons

HQE is used to calculate $\Gamma_{\rm 12}$ and semileptonic asymmetry

A.Lenz arXiv:0802.0977

Use the J/ ψ vertex to determine the Decay Vertex for all modes (makes detector resolution similar for all channels)

Use the J/ψ sample for further study

Lifetime extracted from an un-binned likelihood fit, simultaneously in mass, decay time and decay time error

B⁺ Fit Projections

CDF-Public Note 10071

 τ (ps) Results shown against PDG and other measurements

Most precise meas. of $\tau(B^+)/\tau(B^0)$

In agreement with theoretical prediction:

 $\tau(B^+)/\tau(B^0) = (1.063 \pm 0.027)$ (theory) $\tau(B^+)/\tau(B^0) = (1.088 \pm 0.009 \pm 0.004)$ (exp)

A.Lenz, arXiv:0802.0977

Λ^0_b Fit Projections

Λ_b Lifetime results

Most precise Λ_{b}^{0} lifetime measurement With 4.3 fb⁻¹ the Λ_{b}^{0} lifetime remains higher than other measurements Measured Ratio: $\tau(\Lambda_{b}^{0})/\tau(B^{0}) = 1.020\pm0.030(stat)\pm0.008(syst)$

Theory: $\tau(\Lambda_b^0)/\tau(B^0) = 0.88\pm0.05$ (A.Lenz, arXiv:0802.0977) Some theories favor higher ratio 0.9-1.0 (I.I Bigi,hep-ph/0001003)

Conclusions

Tevatron is giving great contribution to our knowledge of b-baryons

- Observation of the $\Omega_b^- \text{ and } \Xi_b^-$
- Observation of the $\Sigma_{b}^{\pm(*)}$
- Improving measurements of Λ_b properties (new decay modes)
- New CDF analysis provides world best b hadron lifetimes

J = 1/2 b Baryons

