Lessons for New Physics from CKM studies

Enrico Lunghi Indiana University

Flavor Physics and CP violation, 2010 Università di Torino, May 25-28, 2010

Outline

- Flavor violation in the Standard Model
- Inputs to the unitarity triangle analysis
- Status of CKM fits: role of $\mathrm{V}_{\mathrm{ub}}, \mathrm{V}_{\mathrm{cb}}$ and $B \rightarrow T V$
- Parametrization of NP in K/B-mixing and $B \rightarrow T V$ and fit
- Interpretation in terms of complex NP coefficients
- Super-B/LHCb prospects
- Conclusions

The Cabibbo"-Kobayashi*-Maskawa ${ }^{\star}$ matrix

Gauge interactions do not violate flavor:
$\mathcal{L}_{\text {Gauge }}=\sum_{\psi, a, b} \bar{\psi}_{a}\left(i \not \partial-g \not A^{\prime} \delta^{a b}\right) \psi_{b}$
Yukawa interactions (mass) violate flavor:
$\mathcal{L}_{\text {Yukawa }}=\sum_{\psi, a, b} \bar{\psi}_{L a} H Y^{a b} \psi_{R b}=\bar{Q}_{L} H Y_{U} u_{R}+\bar{Q}_{L} H Y_{D} d_{R}+\bar{L}_{L} H Y_{E} E_{R}$
The Yukawas are complex 3×3 matrices:
$Y_{U}=U_{L} Y_{U}^{\text {diag }} U_{R}, \quad Y_{D}=D_{L} Y_{D}^{\text {diag }} D_{R}, \quad Y_{E}=E_{L} Y_{E}^{\text {diag }} E_{R}$
huge potential for NP effects (MFV?)

From Gauge to Mass eigenstates

- neutral currents:

$$
\bar{u}_{L}^{0} \boldsymbol{Z} u_{L}^{0} \Longrightarrow \bar{u}_{L} \not \boldsymbol{Z} U_{L} U_{L}^{\dagger} u_{L}=\bar{u}_{L} \not \boldsymbol{Z} u_{L}
$$

- charged currents:

$$
\bar{u}_{L}^{0} W d_{L}^{0} \Longrightarrow \bar{u}_{L} W U_{L} D_{L}^{\dagger} d_{L}=\bar{u}_{L} W V_{\mathrm{CKM}} d_{L}
$$

The Cabibbo"-Kobayashi*-Maskawa ${ }^{\star}$ matrix

$\lambda: \beta$-decay, $K \rightarrow \pi I V, D \rightarrow(\pi, K) I V, v N \rightarrow \mu X, \ldots$.

A: no direct meas. $\left(B \rightarrow X_{s} \gamma, \Delta M_{B s}, \ldots\right)$
ρ, η : no direct meas. ($\Delta M_{B d}, C P$ violation, K mixing)

Treatment of lattice inputs and errors

- Lattice QCD presently delivers 2+ / flavors determinations for all the quantities that enter the fit to the UT
- Results from different lattice collaborations are often correlated
${ }^{\text {a }}$ MILC gauge configurations: $\mathrm{f}_{\mathrm{Bd}}, \mathrm{f}_{\mathrm{Bs}}, \xi, \mathrm{V}_{\mathrm{ub}}, \mathrm{V}_{\mathrm{cb}}, \mathrm{f}_{\mathrm{K}}$
${ }^{9}$ use of the same theoretical tools: $\mathrm{B}_{\mathrm{k}}, \mathrm{V}_{\mathrm{cb}}$
${ }^{\text {o }}$ experimental data: V_{ub}
- It becomes important to take these correlation into account when combining saveral lattice results [Laiho,EL,Van de Water, 0910.2928]
- We assume all errors to be normally distributed
- Updated averages at: http://www.latticeaverages.org

Determining A

- Can be extracted from tree-level processes ($\mathrm{b} \rightarrow \mathrm{clv}$)
- $\Delta M B B_{s}$ is conventionally used only to normalize $\Delta M B_{d}$ but it should be noted that it provides an independent determination of A (that might be subject to NP effects):

$$
\Delta M_{B_{s}} \propto f_{B_{s}}^{2} \hat{B}_{B_{s}} A^{2} \lambda^{4}
$$

- Other processes are very sensitive to A but also display a strong $\rho-\eta$ and NP dependence and are therefore usually discussed in the framework of a Unitarity Triangle fit:

$$
\begin{aligned}
\left|\varepsilon_{K}\right| & \propto \hat{B}_{K} \kappa_{\varepsilon} A^{4} \lambda^{10} \eta(\rho-1) \\
\operatorname{BR}(B \rightarrow \tau \nu) & \propto f_{B}^{2} A^{2} \lambda^{6}\left(\rho^{2}+\eta^{2}\right)
\end{aligned}
$$

Observables included in the fit

- $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$ from inclusive and exclusive semileptonic decays
- B_{d} and B_{s} mass differences: ξ and $f_{B_{s}} \hat{B}_{s}^{1 / 2}$
- α and γ from $B \rightarrow\left(\pi \pi, \rho \rho, \rho \pi, D^{(*)} K^{(*)}\right)$
- $\operatorname{BR}(B \rightarrow \tau \nu): \hat{B}_{d}\left(f_{B_{d}}=f_{B_{s}} \hat{B}_{s}^{1 / 2} /\left(\xi \hat{B}_{d}\right)\right)$
- $S_{\psi K}=\sin 2 \beta$
- $\varepsilon_{K}: \hat{B}_{K}, \kappa_{\varepsilon}$

Note on ε_{K} :

Inputs to the fit: summary

$$
\begin{aligned}
& \hat{B}_{K}=0.720 \pm 0.025 \\
& \kappa_{\varepsilon}=0.94 \pm 0.017 \\
& \xi=1.237 \pm 0.032 \\
& f_{B_{s}} \sqrt{\hat{B}_{s}}=(275 \pm 13) \mathrm{MeV} \\
& \hat{B}_{d}=1.26 \pm 0.11
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\left|V_{c b}\right|_{\text {excl }}=(39.0 \pm 1.2) \times 10^{-3} \\
\left|V_{c b}\right|_{\text {incl }}=(41.31 \pm 0.76) \times 10^{-3}
\end{array}\right\} \begin{array}{l}
\left(\begin{array}{l}
(40.73 \pm 0.86) \times 10^{-3} \\
1 \text { (error ression } \\
\text { (escaled) }
\end{array}\right.
\end{array}
\end{aligned}
$$

$\Delta m_{B_{d}}=(0.507 \pm 0.005) \mathrm{ps}^{-1}$
$\alpha=(89.1 \pm 4.4)^{\circ}$
$\eta_{1}=1.51 \pm 0.24$
$\eta_{2}=0.5765 \pm 0.0065$
$\eta_{3}=0.47 \pm 0.04$
$\eta_{B}=0.551 \pm 0.007$
$S_{\psi K_{S}}=0.672 \pm 0.024$
$\Delta m_{B_{s}}=(17.77 \pm 0.10 \pm 0.07) \mathrm{ps}^{-1}$
$\gamma=(78 \pm 12)^{\circ}$
$m_{t, \text { pole }}=(172.4 \pm 1.2) \mathrm{GeV}$
$m_{c}\left(m_{c}\right)=(1.268 \pm 0.009) \mathrm{GeV}$
$\varepsilon_{K}=(2.229 \pm 0.012) \times 10^{-3}$
$\lambda=0.2255 \pm 0.0007$
$f_{K}=(156.1 \pm 1.2) \mathrm{MeV}$
$\operatorname{BR}(B \rightarrow \tau \nu)=(1.74 \pm 0.35) \times 10^{-4}$

Current fit to the unitarity triangle

$$
\begin{aligned}
& {[\sin 2 \beta]_{\mathrm{fit}}=0.774 \pm 0.038 \Rightarrow 2.2 \sigma} \\
& {[B R(B \rightarrow \tau \nu)]_{\mathrm{fit}}=(0.773 \pm 0.095) \times 10^{-4} \Rightarrow 2.7 \sigma} \\
& {\left[\hat{B}_{K}\right]_{\mathrm{fit}}=0.918 \pm 0.086 \Rightarrow 2.4 \sigma}
\end{aligned}
$$

Current fit to the unitarity triangle

$$
\begin{aligned}
& {[\sin 2 \beta]_{\mathrm{fit}}=0.774 \pm 0.038 \Rightarrow 2.2 \sigma} \\
& {[B R(B \rightarrow \tau \nu)]_{\mathrm{fit}}=(0.773 \pm 0.095) \times 10^{-4} \Rightarrow 2.7 \sigma} \\
& {\left[\hat{B}_{K}\right]_{\mathrm{fit}}=0.918 \pm 0.086 \Rightarrow 2.4 \sigma}
\end{aligned}
$$

Removing $V_{u b}$

- V_{ub} is the ${ }_{\text {begini\{personal opinion\} }}$ most controversial lend\{personal opinion\} input

$$
\begin{aligned}
& {[\sin 2 \beta]_{\mathrm{fit}}=0.862 \pm 0.045 \Rightarrow 3.3 \sigma} \\
& {[B R(B \rightarrow \tau \nu)]_{\mathrm{fit}}=(0.784 \pm 0.098) \times 10^{-4} \Rightarrow 2.6 \sigma} \\
& {\left[\hat{B}_{K}\right]_{\mathrm{fit}}=0.914 \pm 0.086 \Rightarrow 2.4 \sigma}
\end{aligned}
$$

Removing $V_{u b}$

- V_{ub} is the ${ }_{\text {begini\{personal opinion\} }}$ most controversial lend\{personal opinion\} input

Removing $V_{u b}$ and $V_{c b}$?

- The use of V_{cb} seems to be necessary in order to use K mixing to constrain the UT:

$$
\begin{aligned}
& \Delta M_{B_{s}}=\chi_{s} f_{B_{s}}^{2} \hat{B}_{B_{s}} A^{2} \lambda^{4} \\
& \left|\varepsilon_{K}\right|=2 \chi_{\varepsilon} \hat{B}_{K} \kappa_{\varepsilon} \eta \lambda^{6}\left(A^{4} \lambda^{4}(\rho-1) \eta_{2} S_{0}\left(x_{t}\right)+A^{2}\left(\eta_{3} S_{0}\left(x_{c}, x_{t}\right)-\eta_{1} S_{0}\left(x_{c}\right)\right)\right) \\
& \operatorname{BR}(B \rightarrow \tau \nu)=\chi_{\tau} f_{B}^{2} A^{2} \lambda^{6}\left(\rho^{2}+\eta^{2}\right)
\end{aligned}
$$

- The interplay of these constraints allows to drop V_{cb} while still constraining new physics in K mixing:

$$
\begin{aligned}
& \left|\varepsilon_{K}\right| \propto \hat{B}_{K}\left(f_{B_{s}} \hat{B}_{s}^{1 / 2}\right)^{-4} f(\rho, \eta) \\
& \left|\varepsilon_{K}\right| \propto \hat{B}_{K} \operatorname{BR}(B \rightarrow \tau \nu)^{2} f_{B}^{-4} g(\rho, \eta)
\end{aligned}
$$

Removing $V_{c b}$!

- The use of V_{cb} seems to be necessary in order to use K mixing to constrain the UT:

$X:$	\hat{B}_{K}	$\left\|V_{c b}\right\|$	$f_{B_{s}} \hat{B}_{s}^{1 / 2}$	$\operatorname{BR}(B \rightarrow \tau \nu)$	f_{B}
$\delta X:$	3.7%	2.5%	4.7%	21%	5%
$\delta \varepsilon_{K}:$	3.7%	10%	18.9%	42%	20%

$[\sin 2 \beta]_{\text {fit }}=0.863 \pm 0.051 \Rightarrow 2.8 \sigma$
$\left[B R(B \rightarrow \tau \nu]_{\mathrm{fit}}=(0.763 \pm 0.098) \times 10^{-4} \Rightarrow 2.7 \sigma\right.$
$\left[\hat{B}_{K}\right]_{\mathrm{fit}}=0.970 \pm 0.17 \Rightarrow 1.6 \sigma$
$\left|V_{c b}\right|_{\text {fit }}=(42.6 \pm 0.8) \times 10^{-3} \Rightarrow 1.7 \sigma$

Model Independent Interpretation

- The tension can be interpreted as $N P$ in B_{d} / K mixing or $B \rightarrow T V$:

$$
\begin{aligned}
M_{12} & =M_{12}^{\mathrm{SM}} r_{d}^{2} e^{2 i \phi_{d}} \\
\varepsilon_{K} & =\varepsilon_{K}^{\mathrm{SM}} C_{\varepsilon} \\
\operatorname{BR}(B \rightarrow \tau \nu) & =\operatorname{BR}(B \rightarrow \tau \nu)^{\mathrm{SM}} r_{H}
\end{aligned}
$$

- For NP in B_{d} mixing:

$$
\begin{aligned}
a_{\psi K_{s}} & =\sin 2\left(\beta+\phi_{d}\right) \\
\sin 2 \alpha_{\mathrm{eff}} & =\sin 2\left(\alpha-\phi_{d}\right) \\
X_{s d} & =X_{s d}^{\mathrm{SM}} r_{d}^{-2}
\end{aligned}
$$

- For NP in $\mathrm{B} \rightarrow \mathrm{TV}$:

$$
\operatorname{BR}(B \rightarrow \tau \nu)^{\mathrm{NP}}=\operatorname{BR}(B \rightarrow \tau \nu)^{\mathrm{SM}} \underbrace{\left(1-\frac{\tan ^{2} \beta m_{B^{+}}^{2}}{m_{H^{+}}^{2}\left(1+\epsilon_{0} \tan \beta\right)}\right)^{2}}_{r_{H}}
$$

Model Independent Interpretation

- NP in B mixing (marginalizing over r_{d}):

$$
\left(\theta_{d}\right)_{\mathrm{fit}}=\left\{\begin{array}{lll}
-(3.8 \pm 1.9)^{o} & (2.1 \sigma, p=11 \%) \text { complete fit } & p_{\mathrm{SM}}=2.3 \% \\
-(8.8 \pm 3.1)^{o} & (3.2 \sigma, p=68 \%) \text { no } V_{u b} & p_{\mathrm{SM}}^{\mathrm{no} V_{u b}}=1.4 \% \\
-(10.5 \pm 3.5)^{o} & (3.0 \sigma, p=76 \%) \text { no } V_{q b} & p_{\mathrm{SM}}^{\text {no } V_{q b}}=2.6 \%
\end{array}\right.
$$

- NP in K mixing:

$$
\left(C_{\varepsilon}\right)_{\text {fit }}=\left\{\begin{array}{lll}
1.28 \pm 0.13 & (2.4 \sigma, p=12 \%) & \text { complete fit } \\
1.27 \pm 0.13 & (2.4 \sigma, p=7 \%) & \text { no } V_{u b} \\
1.35 \pm 0.23 & (1.6 \sigma, p=4 \%) & \text { no } V_{q b}
\end{array}\right.
$$

- NP in $B \rightarrow T V$:

$$
\left(r_{H}\right)_{\text {fit }}=\left\{\begin{array}{lll}
2.30 \pm 0.53 & (2.7 \sigma, p=19 \%) & \text { complete fit } \\
2.27 \pm 0.53 & (2.7 \sigma, p=12 \%) & \text { no } V_{u b} \\
2.33 \pm 0.55 & (2.7 \sigma, p=30 \%) & \text { no } V_{q b}
\end{array}\right.
$$

Hard to reconcile with H^{+}effects: in "natural" configurations $\mathrm{r}_{\mathrm{H}}<1$ (see also B \rightarrow DTV)

Model Independent Interpretation

- NP in B mixing (2 dimensional $\left[\theta_{\mathrm{d}}, \mathrm{r}_{\mathrm{d}}\right]$ contours)

- One dimensional r_{d} ranges compatible with $r_{d}=1$

Super-B expectations

- Reducing uncertainties on Bs mixing and $B \rightarrow T V$:

δ_{τ}	δ_{s}	p_{SM}	$\theta_{d} \pm \delta \theta_{d}$	$p_{\theta_{d}}$	$\theta_{d} / \delta \theta_{d}$	
${ }^{*} 20 \%$	${ }^{*} 4.6 \%$	2.6%	$-(10.6 \pm 3.5)^{\circ}$	75%	3.0σ	
${ }^{*} 20 \%$	2.5%	0.6%	$-(10.2 \pm 3.3)^{\circ}$	71%	3.4σ	
${ }^{*} 20 \%$	1%	$3 \times 10^{-2} \%$	$-(9.9 \pm 3.0)^{\circ}$	69%	3.9σ	
10%	${ }^{*} 4.6 \%$	$6 \times 10^{-3 \%}$	$-(10.9 \pm 2.4)^{\circ}$	74%	4.7σ	
3%	${ }^{\circ} 4.6 \%$	$4 \times 10^{-5} \%$	$-(11.0 \pm 2.0)^{\circ}$	74%	5.6σ	
10%	2.5%	1.4×10^{-36}	$-(10.7 \pm 2.4)^{\circ}$	69%	4.8σ	
10%	1%	$1.2 \times 10^{-4 \%}$	$-(10.5 \pm 2.4)^{\circ}$	64%	5.1σ	
3%	2.5%	$1.1 \times 10^{-5} \%$	$-(10.9 \pm 2.0)^{\circ}$	68%	5.7σ	
3%	1%	$4 \times 10^{-6} \%$	$-(10.8 \pm 2.0)^{\circ}$	62%	5.8σ	
$\delta_{s}=\delta\left(f_{B_{s}} \sqrt{B_{s}}\right)$						
$\delta_{\tau}=\delta \mathrm{BR}(B \rightarrow \tau \nu)$						

- Even modest improvements on $B \rightarrow T V$ have tremendous impact on the UT fit ($10 / 50 a b^{-1} \Rightarrow \delta_{T}=10 / 3 \%$)
- Interplay between B_{s} mixing and $B \rightarrow T V$ can result in a 5σ effect

Operator Level Analysis

- Effective Hamiltonian for B_{d} mixing:

$$
\begin{array}{lr}
& \mathcal{H}_{\text {eff }}=\frac{G_{F}^{2} m_{W}^{2}}{16 \pi^{2}}\left(V_{t b} V_{t d}^{*}\right)^{2}\left(\sum_{i=1}^{5} C_{i} O_{i}+\sum_{i=1}^{3} \tilde{C}_{i} \tilde{O}_{i}\right) \\
O_{1}=\left(\bar{d}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{d}_{L} \gamma_{\mu} b_{L}\right) & \tilde{O}_{1}=\left(\bar{d}_{R} \gamma_{\mu} b_{R}\right)\left(\bar{d}_{R} \gamma_{\mu} b_{R}\right) \\
O_{2}=\left(\bar{d}_{R} b_{L}\right)\left(\bar{d}_{R} b_{L}\right) & \tilde{O}_{2}=\left(\bar{d}_{L} b_{R}\right)\left(\bar{d}_{L} b_{R}\right) \\
O_{3}=\left(\bar{d}_{R}^{\alpha} b_{L}^{\beta}\right)\left(\bar{d}_{R}^{\beta} b_{L}^{\alpha}\right) & \tilde{O}_{3}=\left(\bar{d}_{L}^{\alpha} b_{R}^{\beta}\right)\left(\bar{d}_{L}^{\beta} b_{R}^{\alpha}\right) \\
O_{4}=\left(\bar{d}_{R} b_{L}\right)\left(\bar{d}_{L} b_{R}\right) & O_{5}=\left(\bar{d}_{R}^{\alpha} b_{L}^{\beta}\right)\left(\bar{d}_{L}^{\beta} b_{R}^{\alpha}\right) .
\end{array}
$$

- Parametrization of New Physics effects:

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}^{2} m_{W}^{4}}{16 \pi^{2}}\left(V_{t b} V_{t d}^{*}\right)^{2} C_{1}^{\mathrm{SM}}\left(\frac{1}{m_{W}^{2}}-\frac{e^{i \varphi}}{\Lambda^{2}}\right) O_{1}
$$

- Analogue expressions for K mixing

Operator Level Analysis: Mixing

- The contribution of the LR operator O_{4} to K mixing is strongly enhanced ($\mu_{L} \sim 2 \mathrm{GeV}, \mu_{H} \sim m_{t}$):

$$
\square \frac{C_{4}\left(\mu_{L}\right)\langle K| O_{4}\left(\mu_{L}\right)|K\rangle}{C_{1}\left(\mu_{L}\right)\langle K| O_{1}\left(\mu_{L}\right)|K\rangle} \simeq(65 \pm 14) \frac{B_{4}\left(\mu_{L}\right)}{B_{1}\left(\mu_{L}\right)} \frac{C_{4}\left(\mu_{H}\right)}{C_{1}\left(\mu_{H}\right)}
$$

- No analogous enhancement in B_{q} mixing

Operator Level Analysis: B_{d} Mixing

- 2 dimensional $[\Lambda, \varphi]$ contours:

- Lower limit on Λ induced by $\Delta M_{B_{s}} / \Delta M_{B_{d}}$
- Projections of contours yield the one-dimensional no regions
- Fit points to Λ in the few hundred GeV range and $O(I)$ phase

Operator Level Analysis: K Mixing

- 2 dimensional $[\wedge, \varphi]$ contours $\left(\mathrm{O}_{\mathrm{I}}\right)$:

$p_{\mathrm{SM}}^{\mathrm{no}} V_{u b}=1.4 \%$
$p_{\mathrm{SM}}^{\mathrm{no} V_{q b}}=2.6 \%$
- No lower limit on Λ : fitting one parameter only $\left(C_{\varepsilon}\right)$
- Fit points to Λ in the few hundred GeV range and $O(I)$ phase; fine tuning allow lower masses

Operator Level Analysis: K Mixing

- 2 dimensional $[\wedge, \varphi]$ contours $\left(\mathrm{O}_{4}\right)$:

$p_{\mathrm{SM}}^{\mathrm{no}} V_{u b}=1.4 \%$

$p_{\mathrm{SM}}^{\mathrm{no} V_{q b}}=2.6 \%$
- No lower limit on Λ : fitting one parameter only $\left(\mathrm{C}_{\varepsilon}\right)$
- Fit points to Λ in the few TeV range and $O(I)$ phase; fine tuning allow lower masses

Conclusions

- Using 2+ I lattice QCD \rightarrow hint for NP in the UT fit (~3б)
- We need better understanding of inclusive $V_{u b}$ and $V_{c b}$
- The tension in the UT fit could be explained by new physics in B_{d} mixing (preferred), K mixing or $B \rightarrow T V$
- As long as V_{qb} determinations remain problematic, removing semileptonic decays allows to cast the UT fit as a clean \& highprecision tool to identify new physics
- Super-B precision on $B \rightarrow$ TV coupled with improvements on the lattice determination of $f_{B_{s}} \sqrt{B_{s}}$ can test the SM at the 5σ level
- Interpretation of this tension in terms of SM like new physics contribution point to masses in the few hundred GeV range and complex couplings with $O(I)$ phases.

Backup slides

Comments on systematic uncertainties

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD $\left(\mathrm{B}_{\kappa}, \xi\right)$ and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Comments on systematic uncertainties

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD $\left(B_{k}, \xi\right)$ and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Comments on systematic uncertainties

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD $\left(B_{k}, \xi\right)$ and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Comments on systematic uncertainties

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD $\left(B_{k}, \xi\right)$ and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Time dependent CP asymmetry in $b \rightarrow q \bar{q} s$

- We will consider the asymmetries in the $J / \psi, \phi, \eta^{\prime}$ modes
- A case can be made for the $K_{s} K_{s} K_{s}$ final state
[Cheng,Chua,Soni]

K mixing $\left(\varepsilon_{K}\right)$

- Buras, Guadagnoli \& Isidori pointed out that also M_{12}^{K} receives non-local corrections with two insertions of the $\Delta S=\mid$ Lagrangian:

- Using CHPT they obtain a conservative estimate of these
 effects. Combining the latter with our determination of $\operatorname{Im} A_{0}$ we obtain:

$$
\begin{gathered}
\kappa_{\varepsilon}=0.94 \pm 0.017 \\
-6 \%!
\end{gathered}
$$

[Laiho,EL,Van de Water;
Buras, Guadagnoli, Isidori]

