Lessons for New Physics from CKM studies

Enrico Lunghi Indiana University

Flavor Physics and CP violation, 2010 Università di Torino, May 25-28, 2010

Outline

- Flavor violation in the Standard Model
- Inputs to the unitarity triangle analysis
- Status of CKM fits: role of V_{ub} , V_{cb} and $B \rightarrow \tau v$
- Parametrization of NP in K/B-mixing and $B \rightarrow \tau v$ and fit
- Interpretation in terms of complex NP coefficients
- Super-B/LHCb prospects
- Conclusions

The Cabibbo^{*}-Kobayashi^{*}-Maskawa^{*} matrix

Gauge interactions do not violate flavor:

$$\mathcal{L}_{\text{Gauge}} = \sum_{\psi,a,b} \bar{\psi}_{a} (i\partial \!\!\!/ - g \mathcal{A} \, \delta^{ab}) \psi_{b}$$

Yukawa interactions (mass) violate flavor:

 $\mathcal{L}_{\text{Yukawa}} = \sum_{\psi,a,b} \bar{\psi}_{La} \ H \ Y^{ab} \psi_{Rb} = \bar{Q}_L H Y_U u_R + \bar{Q}_L H Y_D d_R + \bar{L}_L H Y_E E_R$

The Yukawas are complex 3x3 matrices:

$$Y_U = U_L Y_U^{\text{diag}} U_R, \quad Y_D = D_L Y_D^{\text{diag}} D_R, \quad Y_E = E_L Y_E^{\text{diag}} E_R$$

From Gauge to Mass eigenstates

huge potential for NP effects (MFV?)

• neutral currents:

 $\bar{u}_L^0 \not Z \, u_L^0 \Longrightarrow \bar{u}_L \not Z \, U_L U_L^\dagger u_L = \bar{u}_L \not Z \, u_L$

• charged currents:

 $\bar{u}_L^0 W d_L^0 \Longrightarrow \bar{u}_L W U_L D_L^{\dagger} d_L = \bar{u}_L W V_{\text{CKM}} d_L$

The Cabibbo^{*}-Kobayashi^{*}-Maskawa^{*} matrix

Wolfenstein
parametrization: $1 - \lambda^2/2$ λ $A\lambda^3(\rho - i\eta)$ $-\lambda$ $1 - \lambda^2/2$ $A\lambda^2$ $A\lambda^3(1 - \rho - i\eta)$ $-A\lambda^2$ 1

Enrico Lunghi

aureate

= Real Nobel Laureate

Treatment of lattice inputs and errors

- Lattice QCD presently delivers 2+1 flavors determinations for all the quantities that enter the fit to the UT
- Results from different lattice collaborations are often correlated
 - MILC gauge configurations: f_{Bd} , f_{Bs} , ξ , V_{ub} , V_{cb} , f_K
 - use of the same theoretical tools: BK, Vcb
 - experimental data: Vub
- It becomes important to take these correlation into account when combining saveral lattice results [Laiho,EL,Van de Water, 0910.2928]
- We assume all errors to be normally distributed
- Updated averages at: <u>http://www.latticeaverages.org</u>

Determining A

- Can be extracted from tree-level processes $(b \rightarrow c l v)$
- ΔMB_s is conventionally used only to normalize ΔMB_d but it should be noted that it provides an independent determination of A (that might be subject to NP effects):

 $\Delta M_{B_s} \propto f_{B_s}^2 \hat{B}_{B_s} A^2 \lambda^4$

 Other processes are very sensitive to A but also display a strong ρ-η and NP dependence and are therefore usually discussed in the framework of a Unitarity Triangle fit:

$$|\varepsilon_K| \propto \hat{B}_K \kappa_{\varepsilon} A^4 \lambda^{10} \eta(\rho - 1)$$

BR $(B \to \tau \nu) \propto f_B^2 A^2 \lambda^6 (\rho^2 + \eta^2)$

Observables included in the fit

- $|V_{ub}|$ and $|V_{cb}|$ from inclusive and exclusive semileptonic decays
- B_d and B_s mass differences: ξ and $f_{B_s} \hat{B}_s^{1/2}$
- α and γ from $B \to (\pi \pi, \rho \rho, \rho \pi, D^{(*)} K^{(*)})$
- BR $(B \to \tau \nu)$: $\hat{B}_d (f_{B_d} = f_{B_s} \hat{B}_s^{1/2} / (\xi \hat{B}_d))$
- $S_{\psi K} = \sin 2\beta$
- ε_K : $\hat{B}_K, \kappa_{\varepsilon}$

Note on ε_K :

Inputs to the fit: summary

 $\hat{B}_K = 0.720 \pm 0.025$ $\kappa_{\varepsilon} = 0.94 \pm 0.017$ $\xi = 1.237 \pm 0.032$ $f_{B_s} \sqrt{\hat{B}_s} = (275 \pm 13) \text{ MeV}$ $\hat{B}_d = 1.26 \pm 0.11$ $\Delta m_{B_d} = (0.507 \pm 0.005) \text{ ps}^{-1}$ $\alpha = (89.1 \pm 4.4)^{\circ}$ $\eta_1 = 1.51 \pm 0.24$ $\eta_2 = 0.5765 \pm 0.0065$ $\eta_3 = 0.47 \pm 0.04$ $\eta_B = 0.551 \pm 0.007$ $S_{\psi K_S} = 0.672 \pm 0.024$ $BR(B \to \tau \nu) = (1.74 \pm 0.35) \times 10^{-4}$

$$\begin{aligned} V_{cb}|_{excl} &= (39.0 \pm 1.2) \times 10^{-3} \\ V_{cb}|_{incl} &= (41.31 \pm 0.76) \times 10^{-3} \\ V_{ub}|_{excl} &= (30.9 \pm 3.3) \times 10^{-4} \\ |V_{ub}|_{incl} &= (40.1 \pm 2.7 \pm 4.0) \times 10^{-4} \\ |V_{ub}|_{incl} &= (40.1 \pm 2.7 \pm 4.0) \times 10^{-4} \\ V_{ub}|_{incl} &= (40.1 \pm 2.7 \pm 4.0) \times 10^{-4} \\ V_{ub}|_{incl} &= (17.77 \pm 0.10 \pm 0.07) \text{ ps}^{-1} \\ \gamma &= (78 \pm 12)^{\circ} \\ m_{t,pole} &= (172.4 \pm 1.2) \text{ GeV} \\ m_c(m_c) &= (1.268 \pm 0.009) \text{ GeV} \\ \varepsilon_K &= (2.229 \pm 0.012) \times 10^{-3} \\ \lambda &= 0.2255 \pm 0.0007 \\ f_K &= (156.1 \pm 1.2) \text{ MeV} \end{aligned}$$

Enrico Lunghi

Current fit to the unitarity triangle

 $[\sin 2\beta]_{\text{fit}} = 0.774 \pm 0.038 \implies 2.2 \sigma$ $[BR(B \to \tau \nu)]_{\text{fit}} = (0.773 \pm 0.095) \times 10^{-4} \implies 2.7 \sigma$ $[\hat{B}_K]_{\text{fit}} = 0.918 \pm 0.086 \implies 2.4 \sigma$

Current fit to the unitarity triangle

 $[\sin 2\beta]_{\text{fit}} = 0.774 \pm 0.038 \implies 2.2 \sigma$ $[BR(B \to \tau \nu)]_{\text{fit}} = (0.773 \pm 0.095) \times 10^{-4} \implies 2.7 \sigma$ $[\hat{B}_K]_{\text{fit}} = 0.918 \pm 0.086 \implies 2.4 \sigma$

Removing V_{ub}

• Vub is the \begin{personal opinion} most controversial \end{personal opinion} input

 $[\sin 2\beta]_{\text{fit}} = 0.862 \pm 0.045 \implies 3.3 \sigma$ $[BR(B \to \tau \nu)]_{\text{fit}} = (0.784 \pm 0.098) \times 10^{-4} \implies 2.6 \sigma$ $[\hat{B}_K]_{\text{fit}} = 0.914 \pm 0.086 \implies 2.4 \sigma$

Removing V_{ub}

Removing V_{ub} and V_{cb} ?

• The use of V_{cb} seems to be necessary in order to use K mixing to constrain the UT:

$$\Delta M_{B_s} = \chi_s \ f_{B_s}^2 \hat{B}_{B_s} A^2 \lambda^4$$

$$|\varepsilon_K| = 2\chi_{\varepsilon}\hat{B}_K\kappa_{\varepsilon} \eta\lambda^6 \left(A^4\lambda^4(\rho-1)\eta_2 S_0(x_t) + A^2 \left(\eta_3 S_0(x_c, x_t) - \eta_1 S_0(x_c)\right)\right)$$
$$BR(B \to \tau\nu) = \chi_{\tau} f_B^2 A^2 \lambda^6 (\rho^2 + \eta^2)$$

 The interplay of these constraints allows to drop V_{cb} while still constraining new physics in K mixing:

$$\begin{aligned} |\varepsilon_K| &\propto \hat{B}_K \ (f_{B_s} \hat{B}_s^{1/2})^{-4} \ f(\rho, \eta) \\ |\varepsilon_K| &\propto \hat{B}_K \ \text{BR}(B \to \tau \nu)^2 \ f_B^{-4} \ g(\rho, \eta) \end{aligned}$$

[Lunghi,Soni 0912.002]

Removing V_{cb} !

• The use of V_{cb} seems to be necessary in order to use K mixing to constrain the UT:

Enrico Lunghi

Removing V_{cb} !

$$|_{\text{fit}} = (42.6 \pm 0.8) \times 10^{-3} \quad \Rightarrow \quad 1.7 \sigma$$

Enrico Lunghi

Model Independent Interpretation

• The tension can be interpreted as NP in B_d/K mixing or $B \rightarrow \tau v$:

$$M_{12} = M_{12}^{\text{SM}} r_d^2 e^{2i\phi_d}$$
$$\varepsilon_K = \varepsilon_K^{\text{SM}} C_{\varepsilon}$$
$$\text{BR}(B \to \tau \nu) = \text{BR}(B \to \tau \nu)^{\text{SM}} r_H$$

• For NP in B_d mixing:

$$a_{\psi K_s} = \sin 2(\beta + \phi_d)$$

$$\sin 2\alpha_{\text{eff}} = \sin 2(\alpha - \phi_d)$$

$$X_{sd} = X_{sd}^{\text{SM}} r_d^{-2}$$

• For NP in $B \rightarrow \tau v$:

$$BR(B \to \tau\nu)^{NP} = BR(B \to \tau\nu)^{SM} \underbrace{\left(1 - \frac{\tan^2 \beta m_{B^+}^2}{m_{H^+}^2 (1 + \epsilon_0 \tan \beta)}\right)^2}_{r_H}$$

Model Independent Interpretation

• NP in B mixing (marginalizing over r_d):

 $(\theta_d)_{\rm fit} = \begin{cases} -(3.8 \pm 1.9)^o & (2.1\sigma, p = 11\%) \text{ complete fit} & p_{\rm SM} = 2.3\% \\ -(8.8 \pm 3.1)^o & (3.2\sigma, p = 68\%) \text{ no } V_{ub} & p_{\rm SM}^{\rm no } V_{ub} = 1.4\% \\ -(10.5 \pm 3.5)^o & (3.0\sigma, p = 76\%) \text{ no } V_{qb} & p_{\rm SM}^{\rm no } V_{qb} = 2.6\% \end{cases}$

• NP in K mixing:

 $(C_{\varepsilon})_{\text{fit}} = \begin{cases} 1.28 \pm 0.13 & (2.4\sigma, p = 12\%) \text{ complete fit} \\ 1.27 \pm 0.13 & (2.4\sigma, p = 7\%) & \text{no } V_{ub} \\ 1.35 \pm 0.23 & (1.6\sigma, p = 4\%) & \text{no } V_{qb} \end{cases}$

• NP in $B \rightarrow \tau v$:

 $(r_H)_{\text{fit}} = \begin{cases} 2.30 \pm 0.53 & (2.7\sigma, p = 19\%) \text{ complete fit} \\ 2.27 \pm 0.53 & (2.7\sigma, p = 12\%) \text{ no } V_{ub} \\ 2.33 \pm 0.55 & (2.7\sigma, p = 30\%) \text{ no } V_{qb} \end{cases}$

Hard to reconcile with H⁺ effects: in "natural" configurations r_H<I (see also B→DTV)

Model Independent Interpretation

• NP in B mixing (2 dimensional $[\theta_d, r_d]$ contours)

• One dimensional r_d ranges compatible with $r_d = 1$

Super-B expectations

• Reducing uncertainties on Bs mixing and $B \rightarrow \tau v$:

$\delta_{ au}$	δ_s	$p_{\rm SM}$	$\theta_d \pm \delta \theta_d$	p_{θ_d}	$ heta_d/\delta heta_d$
*20%	*4.6%	2.6%	$-(10.6\pm3.5)^{\rm o}$	75%	3.0σ
*20%	2.5%	0.6%	$-(10.2\pm3.3)^{\circ}$	71%	3.4σ
*20%	1%	$3 \times 10^{-2}\%$	$-(9.9\pm3.0)^{\circ}$	69%	3.9σ
10%	*4.6%	$6 \times 10^{-3}\%$	$-(10.9\pm2.4)^{\rm o}$	74%	4.7σ
3%	*4.6%	$4 \times 10^{-5}\%$	$-(11.0\pm2.0)^{\circ}$	74%	5.6σ
10%	2.5%	$1.4 \times 10^{-3}\%$	$-(10.7\pm2.4)^{\circ}$	69%	4.8σ
10%	1%	$1.2 \times 10^{-4}\%$	$-(10.5\pm2.4)^{\rm o}$	64%	5.1σ
3%	2.5%	$1.1 \times 10^{-5}\%$	$-(10.9\pm2.0)^{\circ}$	68%	5.7σ
3%	1%	$4 \times 10^{-6}\%$	$-(10.8\pm2.0)^{\circ}$	62%	5.8σ

 $\delta_{\tau} = \delta BR(B \to \tau \nu)$ $\delta_s = \delta(f_{B_s} \sqrt{B_s})$

- Even modest improvements on $B \rightarrow \tau v$ have tremendous impact on the UT fit (10/50 $ab^{-1} \Rightarrow \delta_{\tau} = 10/3\%$)
- Interplay between B_s mixing and $B \rightarrow \tau v$ can result in a 5σ effect

Enrico Lunghi

Operator Level Analysis

• Effective Hamiltonian for B_d mixing:

$$\mathcal{H}_{\text{eff}} = \frac{G_F^2 m_W^2}{16\pi^2} \left(V_{tb} V_{td}^* \right)^2 \left(\sum_{i=1}^5 C_i O_i + \sum_{i=1}^3 \tilde{C}_i \tilde{O}_i \right)$$

$$O_{1} = (\bar{d}_{L}\gamma_{\mu}b_{L})(\bar{d}_{L}\gamma_{\mu}b_{L})$$

$$O_{2} = (\bar{d}_{R}b_{L})(\bar{d}_{R}b_{L})$$

$$O_{3} = (\bar{d}_{R}^{\alpha}b_{L}^{\beta})(\bar{d}_{R}^{\beta}b_{L}^{\alpha})$$

$$O_{4} = (\bar{d}_{R}b_{L})(\bar{d}_{L}b_{R})$$

$$\tilde{O}_1 = (\bar{d}_R \gamma_\mu b_R) (\bar{d}_R \gamma_\mu b_R)$$

$$\tilde{O}_2 = (\bar{d}_L b_R) (\bar{d}_L b_R)$$

$$\tilde{O}_3 = (\bar{d}_L^\alpha b_R^\beta) (\bar{d}_L^\beta b_R^\alpha)$$

$$O_5 = (\bar{d}_R^\alpha b_L^\beta) (\bar{d}_L^\beta b_R^\alpha) .$$

• Parametrization of New Physics effects:

$$\mathcal{H}_{\text{eff}} = \frac{G_F^2 m_W^4}{16\pi^2} \left(V_{tb} V_{td}^* \right)^2 C_1^{\text{SM}} \left(\frac{1}{m_W^2} - \frac{e^{i\varphi}}{\Lambda^2} \right) O_1$$

Analogue expressions for K mixing

Operator Level Analysis: *Mixing*

• The contribution of the LR operator O₄ to K mixing is strongly enhanced ($\mu_L \sim 2 \text{ GeV}, \mu_H \sim m_t$):

 $\wedge (1)$

$$C_{1}(\mu_{L})\langle K|O_{1}(\mu_{L})|K\rangle \simeq \begin{pmatrix} 0.8 \\ 0.8 \\ C_{1}(\mu_{H}) \\ \frac{1}{3}f_{K}^{2}m_{K}B_{1}(\mu_{L}) \\ 0 \\ C_{4}(\mu_{L})\langle K|O_{4}(\mu_{L})|K\rangle \simeq \begin{pmatrix} 0.8 \\ 0.8 \\ C_{1}(\mu_{H}) \\ \frac{1}{3}f_{K}^{2}m_{K}B_{1}(\mu_{L}) \\ \frac{1}{3$$

• No analogous enhancement in B_q mixing

Operator Level Analysis: Bd Mixing

• 2 dimensional [Λ , ϕ] contours: full fit: no V_{ub} no V_{ab} 3 2 2 2 $r \sigma 2\sigma$ 3σ 20 3σ 2σ 3σ φ (rad) φ (rad) φ (rad) 0 0 0 -1 -1-1 $p_{\rm SM}^{\rm no} V_{ub} = 1.4\%$ $p_{\rm SM}^{\rm no \ V_{qb}} = 2.6\%$ $p_{\rm SM} = 2.3\%$ -2-2-2-3200 100 200 300 100 200 300 400 500 100 300 500 500 400 400 Λ (GeV) Λ (GeV) Λ (GeV)

- Lower limit on Λ induced by $\Delta M_{B_s}/\Delta M_{B_d}$
- Projections of contours yield the one-dimensional $n\sigma$ regions
- Fit points to Λ in the few hundred GeV range and O(I) phase

Operator Level Analysis: *K Mixing*

• 2 dimensional [Λ, φ] contours (O_1):

- No lower limit on Λ : fitting one parameter only (C_{ϵ})
- Fit points to Λ in the few hundred GeV range and O(1) phase; fine tuning allow lower masses

Operator Level Analysis: *K Mixing*

• 2 dimensional [Λ , ϕ] contours (O₄):

full fit: no V_{ub} no V_{qb} $l\sigma$ 2σ $l\sigma$ 2σ 1σ 2σ φ (rad) φ (rad) φ (rad) 3σ 3σ -2-2-2 3σ -3-32 2 3 3 3 4 4 2 4 Λ (TeV) Λ (TeV) Λ (TeV) $p_{\rm SM}^{\rm no\ V_{ub}} = 1.4\%$ $p_{\rm SM}^{\rm no\ V_{qb}} = 2.6\%$ $p_{\rm SM} = 2.3\%$

- No lower limit on Λ : fitting one parameter only (C_{ϵ})
- Fit points to Λ in the few TeV range and O(1) phase; fine tuning allow lower masses

Conclusions

- Using 2+1 lattice QCD \rightarrow hint for NP in the UT fit (~3 σ)
- We need better understanding of inclusive V_{ub} and V_{cb}
- The tension in the UT fit could be explained by new physics in B_d mixing (preferred), K mixing or $B \rightarrow \tau V$
- As long as V_{qb} determinations remain problematic, removing semileptonic decays allows to cast the UT fit as a clean & highprecision tool to identify new physics
- Super-B precision on $B \rightarrow \tau v$ coupled with improvements on the lattice determination of $f_{B_s} \sqrt{B_s}$ can test the SM at the 5 σ level
- Interpretation of this tension in terms of SM like new physics contribution point to masses in the few hundred GeV range and complex couplings with O(1) phases.

Backup slides

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Enrico Lunghi

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Enrico Lunghi

Time dependent CP asymmetry in $b \rightarrow q \bar{q} s$

- We will consider the asymmetries in the $J/\psi, \ \phi, \ \eta'$ modes
- A case can be made for the $K_s K_s K_s$ final state

[Cheng, Chua, Soni]

K mixing (\mathcal{E}_K)

• Buras, Guadagnoli & Isidori pointed out that also M_{12}^K receives non-local corrections with two insertions of the $\Delta S=I$ Lagrangian:

• Using CHPT they obtain a conservative estimate of these $\frac{\overline{K}^0}{\overline{\pi}}$ effects. Combining the latter with our determination of ImA₀ we obtain:

$$\kappa_{\varepsilon} = 0.94 \pm 0.017$$

[Laiho,EL,Van de Water; Buras, Guadagnoli, Isidori]