Flavor Physics with ATLAS Status and Perspectives

Samira Hassani (CEA-Saclay/IRFU-SPP) on behalf of the ATLAS collaboration

Flavor Physics and CP Violation 2010 May 25-29, 2010 Torino - Italy Irfu CCC saclay

B-Physics time-line program

The Atlas Detector

First observed collision candidate at 900 GeV, Nov 23 2009

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Note: Solenoid off and Si detectors off or at reduced voltage (no stable beatn)

Collision Event at 7 TeV with 2 Pile Up Vertices

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Overall Statistics for 7 TeV Collisions

- Consider period from 30-March till 19 May (31 runs)
- Instantaneous luminosity L derived from:
 - MBTS (trigger scintillators at ±3.5m from IP) double-side coincidence trigger rate
 - LAr offline event selection (coincidence of in-time end-cap energy deposits)
 - Measurement from dedicated LUCID forward detectors, at ±17m from IP
 - Present overall L scale uncertainty
 ~20% from systematic uncertainties (MC cross-section)
- Total luminosity about 8.3 nb-1
- 94 % of luminosity delivered with Stable Beams was recorded by ATLAS

Tracking: Data/Simulation Agreement

- Detailed studies comparing data/MC
- dedicated care that Monte Carlo samples reflect conditions during data taking (*beam spot position, inactive modules, noisy channels*)
- In general, there is an excellent agreement between data and Monte Carlo

Mass Peaks in Minimum Bias Data

Weak decay reconstruction provides a stringent test of tracking performance

- reconstructed Ks and A masses close
 to PDG value
- width of the invariant mass peaks well reproduced by Monte Carlo

Observation of $D^* \rightarrow D\pi$ at 7 TeV

Masses and Widths agree well with MC expectations (integrated Luminosity~ 200 µb⁻¹)

Muon Spectrometer Results

• Cosmics : a lot of studies made with cosmic rays allow to evaluate the level of readiness of our Spectrometer

• 900 GeV data : Statistics limited, dominantly in the forward region • Data and Monte Carlo are consistent with available statistics (P>4 GeV, pT>2.5 GeV, $|\eta|$ <2.5)

Observation of $J/\psi \rightarrow \mu\mu$ at 7 TeV

Data for integrated luminosity ~ 320 µb-1

Gaussian-mean mass: 3.06±0.02 GeV Resolution: 0.08±0.02 GeV Number of signal events: 49±12 Number of background events: 28±4 Signal and background are computed in a mass range: 2.82-3.30 GeV(30 around the peak).

Perspectives

Selected B-Results with 14 TeV Simulation

- 1) B-Trigger Strategy
- 2) Onia Production and Plarization
- 3) **Β**⁺->**J**/ψK⁺
- 4) $B_{d} \rightarrow J/\psi \phi \text{ and } B_{d} \rightarrow J/\psi K^{*}_{0}$
- 5) <mark>B</mark>₅→µµ

- \rightarrow Low p_T single / two muons
 - Control samples, only at very low luminosity

- Low p_T single / two muons
 - Control samples, only at very low luminosity
- Di-muon (common vertex) in the final state, invariant mass ranges:
 - J/ψ and other heavy quarkonia (Y) decaying to $\mu\mu$

- Low p_T single / two muons
 - Control samples, only at very low luminosity
- Di-muon (common vertex) in the final state, invariant mass ranges:
 - J/ψ and other heavy quarkonia (Y) decaying to $\mu\mu$
 - Very rare $B \rightarrow \mu\mu$

- Low p_T single / two muons
 - Control samples, only at very low luminosity
- Di-muon (common vertex) in the final state, invariant mass ranges:
 - J/ ψ and other heavy quarkonia (Y) decaying to $\mu\mu$
 - Very rare $B \rightarrow \mu\mu$
 - Semileptonic rare
 B → X_sμμ

- Low p_T single / two muons
 - Control samples, only at very low luminosity
- Di-muon (common vertex) in the final state, invariant mass ranges:
 - J/ ψ and other heavy quarkonia (Y) decaying to $\mu\mu$
 - Very rare $B \rightarrow \mu\mu$
 - Semileptonic rare
 B → X_sμμ
 - Need to cover sidebands around the signal peak

- Low p_T single / two muons
 - Control samples, only at very low luminosity
- Di-muon (common vertex) in the final state, invariant mass ranges:
 - J/ ψ and other heavy quarkonia (Y) decaying to $\mu\mu$
 - Very rare $B \rightarrow \mu\mu$
 - Semileptonic rare
 B → X_sµµ
 - Need to cover sidebands around the signal peak
 - Control measurements di-muon low-mass (bb, cc, contributions)
 - Trigger for mass range
 M(μμ) < ~13 GeV

Di-muon Trigger

Single μ Trigger

FullScan Trigger

<u>Two L1 muons</u> confirm muon at L2 Tracking in small RoI Mass & vertex cuts

<u>One L1 muon</u> confirm muon at L2 Tracking in one large RoI,search for the 2rd muon Mass & vertex cuts

<u>One L1 muon</u> confirm muon at L2 Tracking in entire detector, search for the 2rd muon Mass & vertex cuts

The lowest level 1 muon trigger threshold are 4 GeV, 6 GeV

• Single L1 muon triggers:

 Use lowest muon pT threshold and FullScan(time consuming) to give highest efficiency at startup

- L1 di-muon triggers:
 - Use lowest muon pT threshold (MU4)
 - Reduce the background and will be needed at higher luminosity.

Onia Production

• Seeded by Level1 Di- μ trigger μ tracks are fitted to a common vertex For J/ ψ , pseudo-proper time < 0.2 ps (background suppression)

• Expected statistics : 15.000 J/ ψ and 2000 Y per 1 pb⁻¹ using di- μ trigger (pT(μ 1,2) > 4 GeV) S/B = 60 (J/ ψ), 10 (Y)

• Measurement of prompt J/ψ to indirect cross-section relies on separation (and understanding of separation) of these two processes

• With 1pb⁻¹, the ratio R= σ (bb $\rightarrow J/\psi$)/ σ (pp $\rightarrow J/\psi$) can be measured as a function of pT, η with a statistical precision of 10%.

Onia Cross Section and Polarization

- In Atlas, measurement of high- p_{τ} polarization will allow to distinguish production models
- In order to have a full $\cos\theta^*$ coverage, combine di-muon and single- μ trigger measurements

Precision on polarization of J/ψ about 0.02-0.05 after 10 pb-1 and cross-section measurement precision in bins of p_{τ} of the order of 1% (dependent on the polarisation)

21

Sample	p_T , GeV	9-12	12 - 13	13-15	15 - 17	17 - 21	> 21	
$J/\psi, \alpha_{\rm gen} = 0$	α	0.156	-0.006	0.004	-0.003	-0.039	0.019	$\int J/\psi$ polarisation
		± 0.166	± 0.032	± 0.029	± 0.037	± 0.038	± 0.057	
	σ , nb	87.45	9.85	11.02	5.29	4.15	2.52	1/w cross-section
		± 4.35	± 0.09	± 0.09	± 0.05	± 0.04	± 0.04	
J/ψ , $\alpha_{\rm gen} = +1$	α	1.268	0.998	1.008	0.9964	0.9320	1.0217	
		± 0.290	± 0.049	± 0.044	± 0.054	± 0.056	± 0.088	
	σ , nb	117.96	13.14	14.71	7.06	5.52	3.36	Results at
		± 6.51	± 0.12	± 0.12	± 0.07	± 0.05	± 0.05	extrema of
J/ψ , $\alpha_{\rm gen} = -1$	α	-0.978	-1.003	-1.000	-1.001	-1.007	-0.996	
		± 0.027	± 0.010	± 0.010	± 0.013	± 0.014	± 0.018	states
	σ , nb	56.74	6.58	7.34	3.53	2.78	1.68	510105
		± 2.58	± 0.06	± 0.06	± 0.04	± 0.03	± 0.02	
$\Upsilon, \alpha_{\rm gen} = 0$	α	-0.42	-0.38	-0.20	0.08	-0.15	0.47	Y polarisation
		± 0.17	± 0.22	± 0.20	± 0.22	± 0.18	± 0.22	
	σ , nb	2.523	0.444	0.584	0.330	0.329	0.284	r cross-section
		± 0.127	± 0.027	± 0.029	± 0.016	± 0.015	± 0.012	

Reference channel for the search for rare B-decays

- Using di-muon trigger (pt>4,pt>6 GeV), expect ~1600 events for 10 pb-1
 - Cross section (stat) (total)
 - Total to ~3 % ~15 %
 - dσ/dpT to ~10 % ~16-20 %

Signal lifetime to ~ 2.5 % (stat only)					
p_T range [GeV]	$p_T \in [10, 18]$	$p_T \in [18, 26]$	$p_T \in [26, 34]$	$p_T \in [34, 42]$	$p_T \in [10, \inf)$
stat. + A [%]	7.7	6.9	10.5	13.9	4.3
total [%]	16.1	15.8	17.6	19.8	14.8

22

$B_{s} \rightarrow J/\psi(\mu\mu)\phi$ and $B_{d} \rightarrow J/\psi(\mu\mu)K^{*}$

The channel $Bs \rightarrow J/\psi \phi$ is a promising indirect route to New Physics

0.062

n_{siq}/N

n_{trk1} /N

- "Weak mixing phase" ϕ s has been calculated in the SM and is very small (-0.0368±0.0018) but may be enhanced by BSM processes
- The topologically identical $Bd \rightarrow J/\psi KO^*$ (15x greater statistics) is the primary background and is also essential as a control channel (test of lifetime measurement and tagging calibration)
- Simultaneous fit to mass and decay time can be used to extract signal mass and lifetime from data in the channel $B_d \rightarrow J/\psi K_0^*$ with 10pb⁻¹

 0.595 ± 0.017

0.397

 0.379 ± 0.006

ATLAS flavour tagging performance

- After about 1 fb⁻¹, it will be possible to extract interesting parameters from the $B_s \rightarrow J/\psi \varphi$ decays
 - FLAVOUR TAGGING (attempting to determine whether the decay is from a B_s or an anti-B_s) is an essential part of this decay. $B_s \rightarrow J/\psi \varphi$ is not self-tagging
 - ► In ATLAS, the best flavour tagging performance for $B_s \rightarrow J/\psi \varphi$ is obtained using the jet charge tagging algorithm, which is a "same side" tag
 - Utilize correlations between the original quark flavour and momenta, and the charge and momenta of the fragmentation products (jet charge tagging)
- Calibration of the jet-charge tag will be done with the self-tagging reference channel $B_d \rightarrow J/\psi K^{\circ*}$, and will validate Monte Carlo models for fragmentation
 - ► Validated Monte Carlo will be used to determine the tagger quality for $B_s \rightarrow J/\psi \phi$

Tuned jet charge tagger performance				
Parameter	B _d →J/ψK ^α	B _s →J/ψφ		
Luminosity	150 pb ⁻¹	1.5 fb ⁻¹		
Tag Efficiency	0.870 ± 0.003	0.625 ± 0.005		
Wrong tag fraction	0.380 ± 0.004	0.374 ± 0.005		
Dilution	0.240 ± 0.009	0.251 ± 0.010		
Quality	0.050 ± 0.004	0.039 ± 0.003		

ATLAS performance for $B_s \rightarrow \mu\mu$

• $B_s \rightarrow \mu + \mu - is$ highly suppressed in SM (box, penguin diagr.)

- BR SM(Bs→μμ)=(3.42 ± 0.52) × 10−9
- Best exp. limit BR CDF(Bs \rightarrow µµ) \times 5.8×10-8 (95%CL)
- Sensitive to New Physics (new particles in the loop)
 Main challenge is to control the background, the Atlas strategy is:
 - Trigger on events with $B_s {\rightarrow} \mu {+} \mu {-}$ candidates using dedicated trigger algorithms
 - Discriminating variables:
 - decay flight length (significance)
 - pointing angle between di-muon momentum and vector from primary vertex to di-muon vertex
 - isolation (no hadronic activity around Bs flight direction)
 - mass window around m(Bs)

1P/UP N/10.15

0.1

0.05

 $B^0_s \rightarrow \mu \mu$

⁻b Б→μι

ATLAS

0.2

0.4

Isolation

0.6

0.8

25

ATLAS performance for $B_s \rightarrow \mu\mu$

The ATLAS $B_s \rightarrow \mu\mu$ program will continue throughout the lifetime of the detector

After 1 fb⁻¹ ATLAS will have collected $O(10^6)$ dimuons in the invariant mass range 4-7 GeV

- This will allow tuning of cuts and potentially training of multivariate procedures
- Use B+ \rightarrow J/ $\psi(\mu\mu)$ K+ as a reference channel (similar to CDF & D0)
- Branching Ratio will be estimated by normalization to the B+ \rightarrow J/ $\psi(\mu\mu)\kappa$ + events
 - After 10 fb⁻¹ (1 year @ 10^3) we expect (SM):

Expected #ev after kinemat. preselec.	150	700000
	$B_s \rightarrow \mu \mu$ efficiency	$bb{\rightarrow}\mu\mu X \text{ efficiency}$
Isolation>0.9	0.24	(2.6±0.3)x10 ⁻²
L _{xy} > 0.5 mm	0.26	(1⊥0 3)∨10 ⁻³ *)
α < 0.017 rad	0.23	(1±0.3)×10)
M=M _{Bs} ⁺¹⁴⁰ -70MeV	0.76	0.079
Events/10fb ⁻¹	5,7	14 ⁺¹³ -10

Summary

ATLAS detector is performing remarkably well as commissioning for physics advances in the month since first 7 TeV collisions:

- Tracking studies very advanced, including detailed understanding of material, and first physics results. Precise comparisons of data and MC in many domains, signals for meson/baryon resonances and charm
- First significant number of collision muons have led to $J/\psi \rightarrow \mu\mu$ observation, and muon spectrometer is performing very well
- An efficient, fast and clean di-muon trigger scheme will allow ATLAS to collect large numbers of B-hadron decays involving $\mu\mu$ final states, throughout the lifetime of the experiment
 - Early B-Physics data will provide valuable information on the detector performance, but will also allow calibration studies in support of New Physics searches.