Charm Leptonic Decays

Sheldon Stone Syracuse University

FPCP 2010, Torino, Italy, May 2010

In general for all pseudoscalars:

Calculate, or measure if V_{Qq} is known, here take $V_{cd} = V_{us} = 0.2256$, $V_{cs} = V_{ud} - V_{cb}/4 = 0.9734$

Reasons to Measure

- Lattice calculations needed for all sorts of heavy flavor parameters, e.g. $\xi = f_B/f_{Bs}$, $B \rightarrow \pi \ell \nu$ form-factors... $f_D \& f_{Ds}/f_D$ provide an experimental check
- Possibilities to see effects of New Physics
 - □ Interference with H⁺.
 - Rate ratio

 $\frac{\Gamma(P^+ \to \tau^+ \nu)}{\Gamma(P^+ \to \mu^+ \nu)} = m_{\tau}^2 \left(1 - \frac{m_{\tau}^2}{M_p^2} \right)^2 / m_{\mu}^2 \left(1 - \frac{m_{\mu}^2}{M_p^2} \right)^2$ S sensitive to

is sensitive to neutrino couplings, e.g. a sterile neutrino coupling differently to $v_{\mu} \& v_{\tau}$, or any model which doesn't couple as m_{ℓ}^2 , e.g. Leptoquarks

CLEO Toolkit

■ Use e⁺e⁻→DDD

- Fully reconstruct one D, the tag
- □ For D→Xe⁺ ν , positively id the e⁺
- □ For D $\rightarrow \mu^+ \nu$, make sure μ^+ doesn't interact in EM cal
- □ For D $\rightarrow \tau^+ \nu$, also use extra energy, E_{extra}, deposited in EM cal, that is not matched with the tag or final state decay products of the τ^+ , either e⁺ $\nu\nu$, $\pi^+\nu$, or $\rho^+\nu$

 e^+

Toolkit: Missing Mass Squared

- $\square D^+ \to \mu^+ \nu \qquad MM^2 = (E_{D^+} E_{\ell^+})^2 (\vec{p}_{D^+} \vec{p}_{\ell^+})^2$
- We know $E_{D^+} = E_{beam}$, $p_{D^+} = -p_{D^-}$
- If close to zero then almost certainly we have a missing v.

Experimental Considerations

- In principle have access to 6 decays
 - $D^+ \rightarrow e^+ \nu, \ \mu^+ \nu, \ \tau^+ \nu$ $D_S^+ \rightarrow e^+ \nu, \ \mu^+ \nu, \ \tau^+ \nu$
- Helicity suppression ' causes e⁺v mode to be highly suppressed

- D $\rightarrow \tau^+ \nu$ has at 2 neutrinos missing, so is more difficult to detect
- Only B⁺ available, not B^o or B_S & *C* is low

From CLEO at ψ(3770)
Total of 460,000
Background 89,400

FPCP, Torino, May 2010

 $D^+ \rightarrow \mu^+ \nu$

- Require E_{cal} <300
 MeV for candidate;
 no extra γ > 250 MeV
- τ⁺ν/μ⁺ν is **fixed** to
 SM ratio
 - **α 149.7±12.0** μν
 - **28.5** τν
- τ⁺ν/μ⁺ν is allowed to
 float
 - \Box 153.9±13.5 μv
 - **13.5±15.3** τν FPCP, Torino, May 2010

Branching Fractions & f_D+

- Fix $\tau v/\mu v$ at SM ratio of 2.65
 - □ $\mathscr{C}(D^+ \rightarrow \mu^+ \nu)$ = (3.82±0.32±0.09)x10⁻⁴
 - □ f_D+=(206.7±8.5±2.5) MeV
 - This is best number in context of SM
- Float $\tau v/\mu v$
 - □ $\mathscr{C}(D^+ \rightarrow \mu^+ \nu)$ = (3.93±0.35±0.10)x10⁻⁴
 - □ f_D+=(209.7±9.3±2.5) MeV
 - This is best number for use with Non-SM models
- These are final numbers with 818 pb⁻¹
- This is the only measurement

f_{Ds}

CLEO: Use $e^+e^- \rightarrow D_s D_s^*$ at 4170 MeV Belle & BaBar: $e^+e^- \rightarrow c \overline{c}$ at Y(4S)

M(D_S) (GeV)

 $D_{S}^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \rho^{+} \nu$

- Because of the two neutrinos, the signal does not peak in MM², but the most important backgrounds do
- Use E_{extra} as an important discriminant

Analysis Strategy

Signal and MC predicted backgrounds

Measure the *B* of the 3 indicated peaking modes. Use same set of D_S⁻ tags. Find:

$$\mathcal{B}(D_s^+ \to K^0 \pi^+ \pi^0) = (1.00 \pm 0.18 \pm 0.04)\%, \mathcal{B}(D_s^+ \to \pi^+ \pi^0 \pi^0) = (0.65 \pm 0.13 \pm 0.03)\%, \mathcal{B}(D_s^+ \to \eta \rho^+) = (8.9 \pm 0.6 \pm 0.5)\%.$$

Analysis Strategy Continued

- We will fit simultaneously the invariant tag mass & the MM² distributions, separately in three E_{extra} intervals, <0.1 GeV where signal dominates, (0.1, 0.2) GeV where S & B are equivalent, and >0.8 GeV for checking of understanding background, where signal is absent.
- In the fits, we put Gaussian constraints on the bkgrnd yields using known branching fractions and their errors. For the remaining sum of small modes we use the MC estimated rate with a rather large error. Thus the uncertainties in the background will be taken care of in the statistical error.

Fit to E_{extra} > 0.8 GeV

No signal, fit consistent with bkgrnd expectations

FPCP, Torino, May 2010

Signal Region I: E_{extra}<0.1 GeV

Signal Region II: 0.1<E_{extra}<0.2 GeV

Branching Fraction

$E_{extra} \in$	Signal yields	Efficiency	$\mathcal{B}(\mathbf{D}_{s}^{+} \rightarrow \tau^{+} \nu)$
[0,100] MeV	155.2 ± 16.5	25.3%	(5.48 ± 0.59)%
[100,200] MeV	43.7 ± 11.3	6.9%	(5.65 ± 1.47)%
[0,200] MeV	$198.8 \pm 20.0*$	32.2%	$(5.52 \pm 0.57 \pm 0.21)\%$

•Sum of the above two

•f_{Ds} = (257.8±13.3±5.2) MeV

CLEO: $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

- $\mathscr{C}(D_S^+ \to \tau^+ \nu) \bullet \mathscr{C}(\tau^+ \to e^+ \nu \nu) \sim 1.3\%$ is "large" compared with expected $\mathscr{C}(D_S^+ \to Xe^+ \nu) \sim 8\%$
- We will be searching for events opposite a tag with one electron and not much other energy
- Opt to use only a subset of the cleanest tags

FPCP, Torino, May 2010

Measuring $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

- Technique is to find events with an e⁺ opposite D_S⁻ tags & no other tracks, with Σ calorimeter energy < 400 MeV</p>
- No need to find γ from D_s^*
 - $\mathcal{B}(\mathsf{D}_{\mathsf{S}}^{+} \to \tau^{+} \mathsf{v})$
 - $=(5.30\pm0.47\pm0.22)\%$
- f_{Ds}= 252.6±11.1±5.2 MeV

Results

• $\mathcal{B}(D_s^+ \rightarrow \tau^+ \upsilon)$ from CLEO

Mode	Branching Fraction (%)	f _{Ds} (MeV)
$\tau^+ \rightarrow \rho^+ \nu$	$5.52 \pm 0.57 \pm 0.21$	$257.8 \pm 13.3 \pm 4.9$
$\tau^+ \rightarrow e^+ \nu \nu$	$5.30 \pm 0.47 \pm 0.22$	$252.6 \pm 11.1 \pm 5.2$
$\tau^+ \rightarrow \pi^+ \nu$	$6.42 \pm 0.81 \pm 0.18$	$278.0 \pm 17.5 \pm 4.4$
Average	$5.54 \pm 0.32 \pm 0.15$	$259.2 \pm 7.8 \pm 3.4$

- For New Physics searches important to separate τ⁺υ and μ⁺υ [See A.G. Akeroyd and F. Mahmoudi, JHEP 0904, 121(2009)]
- Recall for $\mu^+ \upsilon f_{Ds} = (257.6 \pm 10.3 \pm 4.3) \text{ MeV}$
- Ratio $f_{Ds}(\tau^+\upsilon)/f_{Ds}(\mu^+\upsilon) = (1.01 \pm 0.05)$ consistent with unity

Belle:
$$D_S^+ \rightarrow \mu^+ \nu$$

- Look for e⁺e⁻→DKXγ(D_S), where X=nπ & the D_S is not observed but inferred from calculating the MM
- Then add a candidate μ⁺ and compute MM²
- $\mathscr{B}(D_S^+ \to \mu^+ \nu) =$ (0.644±0.076±0.057)%
- f_{Ds}= (275±16±12) MeV

arXiv:0709.1340v2 [hep-ex]

BaBar: $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

- Idea is to tag with DKX & infer presence of missing D_s^{*}. Then detect γ from decay & e⁺.
- Use E_{extra} as a discriminant
- Insist that P(D_s) > 3 GeV/c
- D_s⁺ signal for E_{extra}=0

BaBar Continued

 Normalize to events where D_s⁺→K_sK⁺ where absolute *𝔅* is given by CLEO

$$\mathcal{B}(D_{S}^{+} \rightarrow \mu^{+}\nu) =$$

(4.5±0.5±0.4±0.3)%

f_{Ds}= (233±13±10±7) MeV

arXiv:1003.3063 [hep-ex]

Summary of Results

Experiment	Mode	\mathcal{B}	$f_{D_s^+}$ (MeV)
CLEO-c [12]	$\mu^+ u$	$(5.65 \pm 0.45 \pm 0.17) \times 10^{-3}$	$257.6 \pm 10.3 \pm 4.3$
Belle $[13]$	$\mu^+ u$	$(6.38 \pm 0.76 \pm 0.57) imes 10^{-3}$	$274 \pm 16 \pm 12$
Average	$\mu^+ u$	$(5.80 \pm 0.43) \times 10^{-3}$	261.5 ± 9.7
CLEO-c $[12]$	$\tau^+ \nu \ (\pi^+ \overline{\nu})$	$(6.42 \pm 0.81 \pm 0.18) \times 10^{-2}$	$278.0 \pm 17.5 \pm 3.8$
CLEO-c $[14]$	$\tau^+ \nu \ (\rho^+ \overline{\nu})$	$(5.52\pm0.57\pm0.21) imes10^{-2}$	$257.8 \pm 13.3 \pm 5.2$
CLEO-c $[15]$	$\tau^+ \nu \ (e^+ \nu \overline{\nu})$	$(5.30 \pm 0.47 \pm 0.22) \times 10^{-2}$	$252.6 \pm 11.2 \pm 5.6$
BaBar [16]	$\tau^+ \nu \ (e^+ \nu \overline{\nu})$	$(4.54\pm0.53\pm0.40\pm0.28)\times10^{-2}$	$233.8 \pm 13.7 \pm 12.6$
Average	$\tau^+ \nu$	$(5.58 \pm 0.35) \times 10^{-2}$	255.5 ± 7.5
Average	$\mu^+\nu + \tau^+\nu$		257.5 ± 6.1

From Rosner & Stone, use $|V_{cs}| = |V_{ud}| - |V_{cb}|^2/2 = 0.97345$, $\tau_{Ds} = 0.500(7)$ ps [arXiv:1002.1655]

•
$$f_{Ds}(\tau^+\nu)/f_{Ds}(\mu^+\nu) = 0.98\pm0.05$$

•
$$f_{Ds}/f_{D^+} = 1.25 \pm 0.06$$

Theoretical Predictions & Postdictions

Quote only unquenched Lattice results (MeV)

	Data	Fermi-Milc (2005)	Fermi-Milc (2010)	HPQCD (2007)	HPQCD (2010)	ETMC (2 flavors of sea q)
f _D +	206.7±8.9	207±3±17	220.3±8.0±4.8	207±4		197±9
f_{Ds}	257.5±6.1	249±3±16	261.4±7.7±5.0	241±3	247±2	244±8

 HPQCD extrapolation from C. Bernard at Lattice QCD Meets Experiment Workshop, Fermilab April 26-27, 2010

Latest Theory

From Kronfeld: The Saga

- Yellow: expt. average
- Gray: lattice average
- Circles: expts.:
 - orange: Υ (4S) - red: $D_s^{(*)}D_s^{(*)}$ threshold
- Squares: lattice
 - filled: published
 - open: prelim or conference proc.

- cyan: 2 flavors

from Kronfeld, arXiv:0912.0543, & his updates.

Conclusions

This used to be exciting

Proceedings of the XXIX PHYSICS IN COLLISION

The f_{D_s} Puzzle Andreas S. Kronfeld

- It appears now that experiment is helping to guide theory, still useful since we need calculation of f_{Bs}/f_B+
- Possible to derive upper limits on H⁺ mass as function of tan β in two Higgs double models (Akeroyd et al) $\Gamma(D\ell\nu)_{H} = r_{q} \Gamma(D\ell\nu)_{SM}$

$$r_q = \left[1 + \left(\frac{1}{m_c + m_q}\right) \left(\frac{M_{D_q}}{M_{H^+}}\right)^2 \left(m_c - \frac{m_q \tan^2 \beta}{1 + \epsilon_0 \tan \beta}\right)\right]^2$$

Other Non-absolute Measurements

Exp.	mode	8	$\mathcal{E}(D_{S} \rightarrow \phi \pi)$	f _{Ds} (MeV)
			(%)	
CLEO [11]	$\mu^+ \nu$	$(6.2 \pm 0.8 \pm 1.3 \pm 1.6) \cdot 10^{-10}$	$^{-3}$ 3.6±0.9	$273\pm19\pm27\pm33$
BEATRICE	$[12] \ \mu^+ \nu$	$(8.3 \pm 2.3 \pm 0.6 \pm 2.1) \cdot 10^{-10}$	$^{-3}$ 3.6 \pm 0.9	$312\pm43\pm12\pm39$
ALEPH [13]	$\mu^+ \nu$	$(6.8 \pm 1.1 \pm 1.8) \cdot 10^{-3}$	$3.6 {\pm} 0.9$	$282 \pm 19 \pm 40$
ALEPH [13]	$\tau^+\nu$	$(5.8 \pm 0.8 \pm 1.8) \cdot 10^{-2}$		
L3 $[14]$	$\tau^+\nu$	$(7.4 \pm 2.8 \pm 1.6 \pm 1.8) \cdot 10^{-10}$	-2	$299\pm57\pm32\pm37$
OPAL [15]	$\tau^+\nu$	$(7.0 \pm 2.1 \pm 2.0) \cdot 10^{-2}$		$283 \pm 44 \pm 41$
BaBar [16]	$\mu^+ \nu$	$(6.74 \pm 0.83 \pm 0.26 \pm 0.66) \cdot 10^{-10}$	$^{-3}$ 4.71±0.46	$283\pm17\pm7\pm14$
		HFAG rei	interpretation	: 237 ± 13 ± 5

See Rosner & Stone, arXiv:0802.1043 for references

Beyond the SM Theories

- Leptoquark models & special Two-Higgs doublet model (Dobrescu & Kronfeld) [arXiv:0803.0512-hep-ph]
- R-parity violating Supersymmetry (Akeroyd & Recksiegel [hep-ph/0210376])
- A. Kundu & S. Nandi, "R-parity violating supersymmetry, B_S mixing, & $D_{s}^{+} \rightarrow \ell^{+}\nu$ " [arXiv:0803.1898])
- Bhattacharyya, Chatterjee & Nandi [arXiv:0911.3811v1-hep-ph]
 - Dosner et al show that the above models should effect τv and μv differently [arXiv:0906.5585-hep/ph]
- Gninenko & Gorbunov argue that the neutrino in the D_s decay mixes with a sterile neutrino, which enhances the rate, but should act the same in D⁺ & D_S, & could be different for μ⁺ν & τ⁺ν [arXiv:0907.4666-hep-ph]

Efficiencies

- Tracking, particle id, E<300 MeV (determined from μ-pairs) = 85.3%
- Not having an unmatched shower > 250 MeV 95.9%, determined from double tag, tag samples
- Easier to find a μν event in a tag then a generic decay (tag bias) (1.53%)

$\mu\nu$ Signal Shape Checked

- Data σ=0.0247±0.0012 GeV²
- MC σ=0.0235±0.0007 GeV²
- Both average of double Gaussians

Case(i) With $\tau^+\nu/\mu^+\nu$ Floating

- Fixed
 - **□ 149.7±12.0** μυ
 - 28.5 τν
- Floating
 - **□ 153.9±13.5** μυ
 - $\square \quad 13.5{\pm}15.3 \ \tau\nu$

New Physics Possibilities III

- Leptonic decay rate is modified by H[±]
- Can calculate in SUSY as function of m_q/m_c,
- In 2HDM predicted

Model of K^oπ⁺ Tail

- Use double tag D° \overline{D}° events, where both $D^{\circ} \rightarrow K^{\mp} \pi^{\pm}$
- Make loose cuts

 On 2nd D^o so as not
 to bias distribution:
 require only 4
 charged tracks in
 the event

The MM² Distribution

Residual Backgrounds for $\mu\upsilon$

 Monte Carlo of Continuum, D^o, radiative return and other D⁺ modes, in μν signal region

Mode	# of events
Continuum	0.8 ± 0.4
$\overline{K}^0\pi^+$	$1.3 {\pm} 0.9$
$D^0 \text{ modes}$	0.3 ± 0.3
Sum	$2.4{\pm}1.0$

This we subtract off the fitted yields

CP Violation

- D⁺ tags 228,945±551
- D⁻ tags 231,107±552
- μ⁻ν events 64.8±8.1
- μ⁺ν events 76.0±8.6

$$A_{CP} \equiv \frac{\Gamma(D^+ \to \mu^+ \nu) - \Gamma(D^- \to \mu^- \nu)}{\Gamma(D^+ \to \mu^+ \nu) + \Gamma(D^- \to \mu^- \nu)} = 0.08 \pm 0.08$$

■ -0.05<A_{CP}<0.21 @ 90% c. l.

Leptonic Decays: $D \rightarrow \ell^+ v$

- c and \overline{q} can annihilate, probability is proportional to wave function overlap
 - Standard Model decay diagram:

In general for all pseudoscalars:

 $\Gamma(\mathbf{P}^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P} \left(1 - \frac{m_{\ell}^{2}}{M_{P}^{2}} \right)^{2} |V_{Qq}|^{2}$

Calculate, or measure if V_{Qq} is known, here take $V_{cd} = V_{us} = 0.2256$, $V_{cs} = V_{ud} - V_{cb}/4 = 0.9734$

CLEO's Technique for $D^+ \rightarrow \mu^+ \nu$

- Exploit $e^+e^- \rightarrow D^-D^+$
- Fully reconstruct a D⁻, and count total # of tags
- Seek events with only one additional oppositely charged track within $|\cos\theta| < 0.9 \&$ no additional photons > 250 MeV (to veto D⁺ $\rightarrow \pi^{+}\pi^{0}$)
- Charged track must deposit only minimum ionization in calorimeter [< 300 MeV: case (i)]
- Compute MM². If close to zero then almost certainly we have a $\mu^+\nu$ decay.

$$MM^{2} = (E_{D^{+}} - E_{\ell^{+}})^{2} - (\vec{p}_{D^{+}} - \vec{p}_{\ell^{+}})^{2}$$

We know $E_{D^+} = E_{beam}$, $p_{D^+} = -p_{D^-}$

Background Check

Systematic Errors

Source of Error	%
Finding the μ^+ track	0.7
Minimum ionization of μ^+ in EM cal	1.0
Particle identification of μ^+	1.0
MM ² width	0.2
Extra showers in event > 250 MeV	0.4
Background	0.7
Number of single tag D ⁺	0.6
Total	2.2

Upper limits on $\tau v \& ev$

Systematic Errors $\mu^+\nu$

Source of Error	%
Finding the μ^+ track	0.7
Particle identification of μ^+	1.0
MM ² width	0.2
Extra showers in event > 300 MeV	0.4
Background	1.0
Number of single tag D _S ⁻	2.0
Tag Bias	1.0
Radiative Correction	1.0
Total	3.0

Systematic Errors

 83.27 ± 0.97 82.91 ± 0.24

Measure efficiency of E_{extra} cut. Use fully reconstructed D_sD_s* events r Data Value at 300 MeV is Events/100 MeV chosen, because it has 400 the same efficiency as 200 $\rho^+\nu$ for E_{extra} 200 MeV L_{extra} (GeV) 1.5 **^ ^** 0.5 2.0 $\epsilon_{\text{Data}}(\%)$ E_{extra} (MeV) $\epsilon_{\rm MC}(\%)$ $\epsilon_{\text{Data}}/\epsilon_{\text{MC}} - 1$ (%) 40.24 ± 1.27 40.81 ± 0.31 < 100 -1.4 ± 3.2 < 200 57.75 ± 1.28 59.12 ± 0.31 -2.3 ± 2.2 set $\sqrt{1.2^2+1.6^2}$ = < 300 72.35 ± 1.16 73.21 ± 0.28 -1.2 ± 1.6 2.0% error

 0.4 ± 1.2

FPCP, Torino, May 2010

< 400

Summary of Systematic Errors pv

Source of Error	%
Finding the π^+ track	0.3
Particle identification of π^+	1.0
π^0 efficiency	1.3
E _{extra} < 200 MeV signal efficiency	2.0
$E_{extra} < 200 \text{ MeV}\& \pi^0$ efficiencies on background	1.1
Background modeling	1.1
Number of single tag D_s^{-}	2.0
Tag Bias	1.0
Total	3.8

Use $e^+e^- \rightarrow D_S D_S^*$ at 4170 MeV

- Reconstruct D_S⁻
- Find the γ from the D_S* & compute MM² from D_S⁻ & γ MM*²=(E_{CM}-E_p-E_{γ})²-(- \vec{p}_{p} - \vec{p}_{γ})²
- Select combinations consistent with a missing D_S⁺ & count the number
- Find MM² from candidate muon for (i) < 300 MeV in Ecal, (ii) E>300 MeV or (iii) e⁻ cand.

$$\mathbf{M}\mathbf{M}^{2} = (\mathbf{E}_{CM} - \mathbf{E}_{D} - \mathbf{E}_{\gamma} - \mathbf{E}_{\mu})^{2} - (-\vec{p}_{D} - \vec{p}_{\gamma} - \vec{p}_{\mu})^{2}$$

$\rm MM^2$ data for $\rm D_S$

- case (i) Total of 30 30848±695 20 tags 10 Ge 0 99% of μ⁺ν in case (ii) Events/ 0.01 8 91 E < 300 MeV 55%/45% split of $\tau^+\nu$, $\tau^+ \rightarrow \pi^+\nu$ 0 in two cases 2 Small e⁻
 - background

