B_s Decays at the Tevatron

Gavril Giurgiu (for the CDF and DØ Collaborations) Johns Hopkins University

Flavor Physics and CP Violation 2010

May 25-29, 2010 Torino - Italy

Introduction

- B_s mesons were initially studied at LEP experiments and then CLEO, running at $\Upsilon(5S)$
- More recently, KEKB has been running at $\Upsilon(5S)$ as well, enabling Belle to do B_s physics
- The largest B_s samples are collected by the CDF and DØ experiments at the Fermilab
- The Tevatron has delivered 8 fb⁻¹; each experiment recorded 7 fb⁻¹ on tape

CDF II Detector

DØ Detector

- Central tracking: silicon vertex detector - drift chamber
 - \rightarrow excellent vertex, momentum and mass resolution
- Particle identification: dE/dX and TOF
- Electron and muon ID by calorimeters and muon chambers

- Excellent tracking and muon coverage
- Excellent calorimetry and electron ID
- Silicon layer 0 installed in 2006 improves track parameter resolution

Neutral B_s System

- A B_s meson is a $|bs\rangle$ state with $I(J^P) = O(O^{-1})$

- Time evolution of B_s flavor eigenstates described by Schrodinger equation:

$$i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix}$$

- Diagonalize mass (*M*) and decay (Γ) matrices \rightarrow mass eigenstates :

$$|B_s^H\rangle = p \,|B_s^0\rangle - q \,|\bar{B}_s^0\rangle \qquad |B_s^L\rangle = p \,|B_s^0\rangle + q \,|\bar{B}_s^0\rangle$$

- Flavor eigenstates differ from mass eigenstates and mass eigenvalues are
different (
$$\Delta m_s = m_H - m_L \approx 2|M_{12}|$$
)
 $\rightarrow B_s$ oscillates with frequency Δm_s
precisely measured by
CDF $\Delta m_s = 17.77 + 0.12 \text{ ps}^{-1}$
DØ $\Delta m_s = 18.56 + 0.87 \text{ ps}^{-1}$

- Mass eigenstates have different decay widths $\Delta \Gamma = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}|\cos(\Phi_s) \quad \text{where} \quad \phi_s^{SM} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \ge 10^{-3}$

Recent B_s Results at the Tevatron

- Rare decays (see talk by Masato Aoki):
 - DØ: A new expected upper limit on $B(B_s \rightarrow \mu^+\mu^-)$ using 5 fb⁻¹ of Run II data, DØ Conference Note 5906-CONF
 - CDF: Search for FCNC Rare Decay: $B_{s,d} \rightarrow \mu^+ \mu^-$, PRL 100,101802 (2008)
 - CDF: Forward-backward asymmetry in $B \rightarrow K^{(*)}\mu\mu$ and observation of $B_s \rightarrow \Phi\mu\mu$, Phys. Rev. D79, 011104(R) (2009)
 - CDF: Search for Lepton Flavor Violating Decays $B_{s,d} \rightarrow e\mu$, Phys. Rev. Lett. 102, 201801 (2009)

- Mixing and CP Violation (see talks by L. Oakes and A. Chandra and G. Brooijmans):

- CDF: Calibration of the Same Side Kaon Tagger using B_s mixing, http://www-cdf.fnal.gov/physics/new/bottom/100204.blessed-sskt-calibration/cdf10108_ssktcalib.pdf
- DØ and CDF: Measurements of CP Violating Phase β_s in $B_s \rightarrow J/\Psi \Phi$ Decays
- DØ: Evidence for an anomalous like-sign di-muon charge asymmetry, arXiv:1005.xxx [hep-ex] http://www-d0.fnal.gov/Run2Physics/WWW/results/final/B/B10A/
- $B_{\rm s} \rightarrow \Phi \Phi$ Decays (this talk)
 - CDF: Ratio of branching fractions: $BR(B_s \rightarrow \Phi \Phi) / BR(B_s \rightarrow J/\psi \Phi)$ http://www-cdf.fnal.gov/physics/new/bottom/090618.blessed-Bsphiphi2.9/
 - CDF: Measurement of the Polarization Amplitudes of the B_s→ ΦΦ Decays, http://www-cdf.fnal.gov/physics/new/bottom/100304.blessed-Bsphiphi_amplitudes/index.html

$B_s \rightarrow \Phi \Phi$ Decays

- Part of the $B \rightarrow$ Vector Vector decay "family"
 - initial state a pseudo-scalar (spin 0) B-meson
 - final state two light vector (spin 1) mesons
- Conservation of total angular momentum requires that the VV final state has orbital angular momentum of 0, 1 or 2
- Alternative bases in the angular momentum space are used to describe such decays:
 - helicity basis: each V meson can have helicity +1 (H_{+}), 0 (H_{0}) or -1 (H_{-})
 - transversity basis: V meson polarizations w.r.t. direction of motion are either:
 - transverse, perpendicular to each other: $A_{\perp} \sim H_{+} + H_{-}$
 - transverse, parallel to each other: $A_{\parallel} \sim H_{\text{-}}$ $H_{\text{-}}$

"Polarization Puzzle" and CP Violation

- "Naïve" SM analyses based on V-A nature of weak interactions and helicity conservation in QCD predict that longitudinal component (A_0/H_0) dominates in $B \rightarrow VV$ decays, while transverse component is suppressed by m_V/m_B

- Expectation confirmed by *B* factories in tree dominated $B \rightarrow VV$ decays but not in penguin decays like $B \rightarrow \Phi K^*$ where transverse and longitudinal components are found to of similar intensity

- Both new physics and SM (penguin annihilation, re-scattering) explanations proposed to explain the "polarization puzzle"

penguin annihilation: \bar{g} A. L. Kagan, Phys. Lett. B **601**, 151 (2004) q K^*

7

- Another interesting reason for studying $B_s \rightarrow \Phi \Phi$ decays is the expected negligible CP violation phase:

 $\phi_{\rm s} \simeq \arg(V_{tb}V_{ts}^{\star})^2 - \arg(V_{cb}V_{cs}^{\star})^2 = 0.0041 \pm 0.0008$

- New physics contributions (in the penguin loop) would be seen as non-zero CP violation phase $\varPhi_{\rm s}$

$B_s \rightarrow \Phi \Phi$ Branching Ratio Measurement

- First $B_s \rightarrow \Phi \Phi$ observation and branching fraction measurements performed by CDF with 180 pb⁻¹, PRL 95 031801 2005:
- Analysis updated with 2.9 fb⁻¹ collected by the CDF displaced track trigger
- Branching ratio measured relative to the better known $B_s \rightarrow J/\Psi \Phi$ decay mode (both $B_s \rightarrow \Phi \Phi$ and $B_s \rightarrow J/\Psi \Phi$ collected from displaced track trigger)

$$\frac{\mathcal{B}(B^0_s \to \phi \phi)}{\mathcal{B}(B^0_s \to J/\psi \ \phi)} = \frac{N_{\phi\phi}}{N_{J/\psi\phi}} \cdot \frac{\mathcal{B}(J/\psi \to \mu\mu)}{\mathcal{B}(\phi \to K^+K^-)} \cdot \frac{\varepsilon_{TOT}^{J/\psi\phi}}{\varepsilon_{TOT}^{\phi\phi}} \cdot \varepsilon_{\mu}^{TOT}$$

- $\varepsilon^{J/\Psi} / \varepsilon^{\phi\phi}$ reconstruction efficiency ratio determined from simulation
- To increase selection efficiency, only one muon is identified by muon chamber
- Need to determine ε_{μ}^{TOT} muon efficiency from data by counting J/Ψ states with either one or both muons identified by muon systems
- Muon efficiencies measures as function of muon transverse momentum

$B_s \rightarrow \Phi \Phi$ and $B_s \rightarrow J/\Psi \Phi$ Signal Yields

- Reconstruct $\Phi[\rightarrow KK]\Phi[\rightarrow KK]$ and $\Phi[\rightarrow KK]J/\Psi[\rightarrow \mu\mu]$ final states
- Signal selection based on optimized requirements on kinematic and topological quantities

$B_s \rightarrow \Phi \Phi$ Branching Ratio Results

- Signal yields: $N_{\phi\phi} = 295 \pm 20(\text{stat}) \pm 12(\text{syst})$ $N_{J/\psi\phi} = 1766 \pm 48(\text{stat}) \pm 41(\text{syst})$

$$\frac{\mathcal{B}(B_s^0 \to \phi \phi)}{\mathcal{B}(B_s^0 \to J/\psi \phi)} = [1.78 \pm 0.14(stat) \pm 0.20(syst)] \cdot 10^{-2}$$

$$\mathcal{B}(B_s^0 \to \phi\phi) = [2.40 \pm 0.21(stat) \pm 0.27(syst) \pm 0.82(BR)] \cdot 10^{-5}$$

- Compared to the 180 fb⁻¹ result: BR($B_s \rightarrow \Phi \Phi$) = (1.4 ± 0.6(stat.) ± 0.2(syst.) ± 0.5(BR))x10⁻⁵
- Main systematic uncertainties from polarization amplitudes
- Comparison with theoretical calculations (from LHCb public note 2007-047):

http://www-cdf.fnal.gov/physics/new/bottom/090618.blessed-Bsphiphi2.9/lhcb-2007-047.pdf

	BR[10 ⁻⁶]	f_L	Γ_T/Γ [%]	Comments	Reference
Experiment	$14^{+6}_{-5}(\text{stat.}) \pm 6(\text{syst.})$		_		[4]
QCD Factorisation	$21.8^{+1.1}_{-1.1}{}^{+30.4}_{-10}$	43^{+0+61}_{-0-34}			[5]
	$19.5^{+1.0+13.1}_{-1.0-8.0}$	48^{+0+26}_{-0-27}		WA from data ^a	
QCD Factorisation	13.1		13.4	see erratum	[6]
Naive Factorisation	9.05		11.7	see erratum	
NLO EWP a	6.80		13.7	T and P ^b	[7]
	5.20		13.7	T, P and EWP ^b	
Factorization	0.37 — 25.1			Range	[8]

^a WA stands for "Weak Annhilation".

^b T, P and EWP stand for "Tree",

[4] D. Acosta et al., Phys. Rev. Lett. 95, 031801 (2005).

[5] M. Beneke *et al.*, hep-ph/0612290.

"Penguin" and "Electroweak Penguin", [6] X. Li et al., Phys. Rev. D68, 114015 (2003); Erratum-ibid. D71, 019902 (2005 ph/0309136.

[7] D. Du and L. Guo, J. Phys. G: Nucl. Part. Phys. 23, 525 (1997).

[8] Y.H. Chen et al., Phys. Rev. D59, 074003 (1999).

Decay Angles in Helicity Basis

- Angles θ_1 and θ_2 are polar angles of positive kaons in each Φ rest frame
- φ is angle between two KK decay planes

$B_s \rightarrow \Phi \Phi$ Polarization Measurement

- Polarization measurement performed
 - without attempting to identify B_s flavor at production (un-tagged analysis) and
 - assuming CP violation phase $\Phi_s = 0$

$$\begin{array}{ll} -\operatorname{\mathsf{Decay\ rate}} & \frac{d^4\Lambda(\vec{\omega},t)}{dtd\vec{\omega}} = \frac{9}{32\pi} \sum_{i=1}^6 K_i(t) f_i(\vec{\omega}) & \text{in helicity basis:} \\ f_1(\vec{\omega}) = 4\cos^2\vartheta_1\cos^2\vartheta_2 \\ f_2(\vec{\omega}) = \sin^2\vartheta_1\sin^2\vartheta_2(1+\cos 2\vartheta_2) \\ f_2(\vec{\omega}) = \sin^2\vartheta_1\sin^2\vartheta_2(1-\cos 2\vartheta_2) \\ f_3(\vec{\omega}) = \sin^2\vartheta_1\sin^2\vartheta_2(1-\cos 2\vartheta_2) \\ f_4(\vec{\omega}) = -2\sin^2\vartheta_1\sin^2\vartheta_2\sin 2\vartheta_2\sin 2\vartheta_2 \\ f_5(\vec{\omega}) = \sqrt{2}\sin 2\vartheta_1\sin 2\vartheta_2\cos \vartheta_2 \\ f_6(\vec{\omega}) = -\sqrt{2}\sin 2\vartheta_1\sin 2\vartheta_2\sin \vartheta_2 \\ \tilde{\mathcal{F}}_e = \frac{2}{\Gamma_L} \left[|A_0|^2 f_1(\vec{\omega}) + |A_{\parallel}|^2 f_2(\vec{\omega}) + |A_0| |A_{\parallel}|\cos \delta_{\parallel} f_5(\vec{\omega}) \right] \\ \tilde{\mathcal{F}}_o = \frac{2}{\Gamma_H} (A_{\perp}|^2) f_3(\vec{\omega}) & \delta_{\perp} = \arg(A_0^*A_{\parallel}) \\ \tilde{\mathcal{W}} = \frac{|A_0|^2 + |A_{\parallel}|^2}{\Gamma_L} + \frac{|A_{\perp}|^2}{\Gamma_H} \end{array} \\ \begin{array}{l} \operatorname{OBSERVABLES} \\ \end{array}$$

Angular Acceptance and Background Distributions

- Detector acceptance sculpts angular distributions
 - Acceptance function determined from simulation

Systematic Uncertainties

- The largest systematic uncertainties come from:
 - possible s-wave contributions like $B_s \rightarrow \Phi f^0$ or $B_s \rightarrow \Phi(KK)^{non-resonant}$
 - assumptions on heavy and light lifetimes and their effect on polarization via the lifetime dependent trigger acceptance

n	$ A_0 ^2$ syst	$ A_{\parallel} ^2$ syst	$ A_{\perp} ^2$ syst	$\cos \delta_{\parallel}$ syst
MC reweight	± 0.003	± 0.001	± 0.002	± 0.007
Acceptance binning	± 0.001	± 0.001	± 0.000	± 0.004
Acceptance Model	± 0.005	± 0.002	± 0.003	± 0.005
Background Model	± 0.001	± 0.001	± 0.002	± 0.009
Acceptance <i>ct</i> -dependence	± 0.000	± 0.001	± 0.001	± 0.004
Reflection component	± 0.008	± 0.002	± 0.006	± 0.019
Non-resonant contribution	± 0.013	± 0.003	± 0.010	± 0.084
Satellite peak	± 0.004	± 0.000	± 0.004	± 0.020
Acceptance $\Delta\Gamma$ -dependence	± 0.009	± 0.009	± 0.016	± 0.011
$\tau_{\rm L(H)}$ uncertainties	± 0.008	± 0.006	± 0.017	
CP-violation	± 0.002	± 0.001	± 0.003	± 0.009
total	± 0.021	± 0.011	± 0.027	± 0.090

Analysis Cross-Check with $B_s \rightarrow J/\Psi \Phi$ Decays

- In same $B_s \rightarrow J/\Psi \Phi$ sample used for branching ratio analysis measure polarization in $B_s \rightarrow J/\Psi \Phi$ decays
- Analysis performed in transversity basis
- Assume no CP violation: $\beta_s = 0$
- Angular acceptance determined from simulation as in the $B_s \rightarrow \Phi \Phi$ case
- Compared to CDF measurement from di-muon trigger with 5.2 fb⁻¹ (see talk by Louise Oakes) and DØ measurement with 2.8 fb⁻¹(Phys.Rev.Lett.102:032001,2009)

$B_s \rightarrow \Phi \Phi$ Fit Projections and Results

Remarks

- Naïve SM hierarchy $|A_0| \gg |A_{\parallel}| \simeq |A_{\perp}|$ not satisfied in $B_s \to \Phi \Phi$
- Instead, we observe $|A_0| \simeq |A_\perp| \gtrsim |A_\parallel|$
- Longitudinal polarization fraction $f_L \approx 0.35$ smaller than transverse component $f_T \approx 0.65$ different than:
 - SM expectation that transverse component is suppressed by m_{ϕ}/m_{Bs}
 - $B^+ \to \varPhi K^{\star_+}($ f_ = 0.50 +/- 0.05) and $B^0 \to \varPhi K^{\star_0}($ f_ = 0.484 +/- 0.033)

Conclusions and Outlook

- First measurement of the polarization amplitudes in $B_s \rightarrow \Phi \Phi$ decays performed at the Tevatron by the CDF experiment using 2.9 fb⁻¹ of data:

$$\begin{aligned} |A_0|^2 &= 0.348 \pm 0.041(\text{stat}) \pm 0.021(\text{syst}) \\ |A_{\parallel}|^2 &= 0.287 \pm 0.043(\text{stat}) \pm 0.011(\text{syst}) \\ |A_{\perp}|^2 &= 0.365 \pm 0.044(\text{stat}) \pm 0.027(\text{syst}) \\ \cos \delta_{\parallel} &= -0.91^{+0.15(\text{stat})+0.09(\text{syst})}_{-0.13(\text{stat})-0.09(\text{syst})} \end{aligned}$$

- Already 7 fb⁻¹ of data on tape and about 10 fb⁻¹ expected by the end of the Tevatron running in 2011
- Expect half statistical errors with 10 fb⁻¹ by end of 2011
- A time dependent analysis with 10 fb⁻¹ will also measure $\Delta\Gamma_s$ in this decay mode

Backup

Backgrounds

- *B* decays mis-reconstructed as $B_s \rightarrow \Phi \Phi$ when a pion is mis-identified as a kaon:

$$B^{0} \to \phi K^{*0} \to K^{+} K^{-} K^{+} \pi^{-} \\ B^{0}_{s} \to \overline{K}^{*0} K^{*0} \to K^{-} \pi^{+} K^{+} \pi^{-}$$

- Estimated as: $N(B^0 \to \phi K^*) = \frac{f_d}{f_s} \frac{\mathcal{B}(B^0 \to \phi K^{*0})}{\mathcal{B}(B^0_s \to J/\psi\phi)} \frac{\mathcal{B}(K^{*0} \to K^+\pi^-)}{\mathcal{B}(J/\psi \to \mu\mu)} \frac{\varepsilon^{\phi K^*}(\phi\phi)}{\varepsilon^{J/\psi\phi}} N(B^0_s \to J/\psi\phi)$

$$N(B_s^0 \to \overline{K^{*0}}K^{*0}) = \frac{\mathcal{B}(B_s^0 \to \overline{K^{*0}}K^*)}{\mathcal{B}(B_s^0 \to J/\psi\phi)} \frac{\mathcal{B}(K^{*0} \to K^+\pi^-)}{\mathcal{B}(J/\psi \to \mu\mu)} \frac{\mathcal{B}(K^{*0} \to K^+\pi^-)}{\mathcal{B}(\phi \to K^+K^-)} \frac{\varepsilon^{\overline{K^*K^*}}(\phi\phi)}{\varepsilon^{J/\psi\phi}} \cdot N(B_s^0 \to J/\psi\phi)$$

reflection	$arepsilon(\phi\phi)$	number of events
$B^0_s \to \bar{K^{*0}} K^{*0}$	$\sim 10^{-6}$	0
$B^0 \to \phi K^{*0}$	$(0.0134 \pm 0.0002)\%$	8 ± 3

- $B^0 \rightarrow J/\Psi K^{*0}$ decays mis-reconstructed as $B_s \rightarrow J/\Psi \Phi$ decays

$$f_{J/\psi K^{*0}} = \frac{f_d}{f_s} \frac{\mathcal{B}(B^0 \to J/\psi K^{*0})}{\mathcal{B}(B^0_s \to J/\psi \phi)} \frac{\mathcal{B}(K^{*0} \to K^+ \pi^-)}{\mathcal{B}(\phi \to K^+ K^-)} \frac{\varepsilon^{J/\psi K^{*0}}(J/\psi \phi)}{\varepsilon^{J/\psi \phi}} = 0.0419 \pm 0.0093$$

Comparison with theoretical predictions:

	f _L [%]	f _T [%]
CDFII experimental result 2.9 fb-1	34.8±4.1(stat.)±2.1(syst.)	65.2±4.1(stat.)±2.1(syst.)
QCD factorization (2009)	34 ±28	66±28
A. Datta, D. London, J. Matias,	M. Nagashimaand A. Szynkman, Fina	I I-state Polarization in B⁰_s Decays , arXiv:hep-ph/0802.0897v2
QCD factorization 1.a (2007)	$43 \pm 0^{+61}_{-34}$	$57\pm0^{+61}$ -34
QCD factorization 1.b (2007)	48 ± 0 ⁺²⁶ _{-27}	$52\pm0^{+26}$ -27
M. Beneke, J. Rohrerand and D	0. Yang, Branching fractions, polariz	cation and asymmetries of B→VV decays.
<i>Nuclear physics B</i> ,vol. 774(Issu	les 1-3):pgs.64-101,9 July 2007 or arX	iiv:hep-ph/0612290v2
QCD factorization 2	86.6	13.4
NAIVE factorization	88.3	11.7
X. Li, G. Lu and Y. Yang, Charn	nless B→VV decays in QCD Factoria	zation. <i>Phys. Rev. D</i> 71, 019902(E) (2005)
NLO EWP 1	86.3	13.7
NLO EWP 2	86.3	13.7
D. Du and L. Guo, Electroweak pengu	iin contributions in charmless B→V	V decays beyond leading logarithms, J.Phys.G 23, 525.(1997)
Perturbative QCD (2002) A. Ali, G. Kramer, Y. Li, C. Lu, V in the pQCD approach. Phys.	61.9 ^{+3.6+2.5} -3.2-3.3 7. L. Shen, W. Wang and Y. Wang, Ch <i>Rev. D 76, 074018 (2007)</i>	8.1 ^{+3.6+2.5} -3.2-3.3 parmless nonleptonic B0s decays to PP, PV and VV final state