

$D^{0}\mbox{-hadronic}$ decays related to the extraction of γ

Chris Thomas

Oxford University & Rutherford Appleton Laboratory

On behalf of the CLEO-c collaboration

25 May 2010

Outline

- Introduction
- Quantum-correlated decays at CLEO-c
- D⁰-hadronic decays
 - Dalitz analysis
 - ADS + GLW method
 - Multibody ADS method
 - Influence on γ precision
- The future

Introduction

25 May 2010

Introduction

• Currently γ is the least constrained of the CKM angles

- Analysis of $B^{\pm} \rightarrow (D^0/\overline{D^0}) K^{\pm}$ channels is a very promising method to determine γ
- Concept is outlined on next two slides; see talk by
 D. Derkach for more detail

25 May 2010

D⁰-hadronic decays related to the extraction of γ Chris Thomas – Oxford & RAL – CLEO-c

Use of $B^\pm \to (D^0/\overline{D}{}^0)~K^\pm$ to determine γ

Use of $B^\pm \to (D^0/\overline{D}{}^0)~K^\pm$ to determine γ

Quantum-correlated decays at CLEO-c

25 May 2010

CLEO-c

- Located at Cornell Electron Storage Ring
- e^+e^- collisions
- Data collected at and above $c\bar{c}$ threshold
- (818 \pm 8) pb^{-1} of e^+e^- $\rightarrow \psi(3770)$ events
- $\psi(3770) \rightarrow D^0 \overline{D^0}$ system is quantum-correlated with overall CP -1
- Very clean environment
 - Low backgrounds
 - Can reconstruct 'missing' particles (K_L, v)

25 May 2010

Exploiting quantum correlations

- Overall CP of the system is known (-1)
- Determine quantum numbers of one D^0 that has decayed to a known CP state
 - $\ ^{\rm o}$ e.g. K^+K^- which has CP +1
- Quantum correlation enables deduction of quantum numbers of the other D^0- which has decayed to the final state of interest
- Known as tagging
- Currently, unique results at CLEO-c
 - BES-III measurements have begun

25 May 2010

Selections at CLEO-c

• Plane of D⁰ and $\overline{D}{}^0 m_{BC} \equiv \sqrt{E_{beam}^2 - \mathbf{p}_D^2}$

- Flat background estimated using sidebands
- Peaking background estimated using MC

25 May 2010

Selections at CLEO-c

- For tags containing $\rm K_{\rm L}$, reconstruct missing momentum and hence determine (missing mass)^2
 - Expected to be centred on K_L mass² (0.25 GeV²/c⁴)

25 May 2010

D⁰-hadronic decays related to the extraction of γ Chris Thomas – Oxford & RAL – CLEO-c

BES-III

- Located at BEPCII e^+e^- collider, Beijing
- Design luminosity 10³³ cm⁻² s⁻¹
- This year collected ~700 pb⁻¹ at $\psi(3770)$ aiming for total of 1fb⁻¹
- 2011: narrow resonance (J/ ψ , ψ)
- 2012: ψ(3770)
 - $_{\mbox{\tiny D}}$ Estimated total integrated luminosity $\gtrsim 4 f b^{\mbox{\scriptsize -1}}$
- Hadronic charm physics program

Quantum correlations, γ input, ...

• For much more information see talk by H. Li

25 May 2010

D⁰-hadronic decays

25 May 2010

Introduction

- D^0 decays to final states containing kaons (K^{\pm},\,K_S) and pions ($\pi^{\pm},\,\pi^0$)
- For a successful determination of γ from $B^{\pm} \rightarrow DK^{\pm}$, the D-decay parameters must be

well-known for each final state

CLEO-c input very useful

- When D^0 and $\overline{D^0}$ are considered together they are referred to as D

• D decays to $K_{\rm S}h^+h^-$ (h = K, π)

25 May 2010

 Three-body final state is a natural candidate for a Dalitz analysis

25 May 2010

• D⁰ decay amplitude:

$$f_{D^0}(x,y) \equiv A_{xy}e^{i\delta_{xy}} = \mathcal{A}(D^0 \to K^0_S h^+ h^-)(x,y)$$

• In absence of D-mixing and CPV:

$$f_{D^0}(x,y) = f_{\overline{D^0}}(y,x)$$

• B⁻ decay amplitude:

 $\mathcal{A}(\mathrm{B}^{-} \to (\mathrm{K}^{0}_{\mathrm{S}}\mathrm{h}^{+}\mathrm{h}^{-})_{\mathrm{D}}\mathrm{K}^{-}) \propto f_{D^{0}}(x, y) + r_{B}e^{i(\delta_{B}-\gamma)}f_{D^{0}}(y, x)$

• B⁻ decay rate:

 $\Gamma(\mathrm{B}^{-} \to (\mathrm{K}^{0}_{\mathrm{S}}\mathrm{h}^{+}\mathrm{h}^{-})_{\mathrm{D}}\mathrm{K}^{-}) \propto A^{2}_{xy} + r^{2}_{B}A^{2}_{yx}$

 $+ 2r_B A_{xy} A_{yx} [\cos(\delta_B - \gamma) \cdot \cos(\Delta \delta_D) - \sin(\delta_B - \gamma) \cdot \sin(\Delta \delta_D)]$

17

25 May 2010

- Options:
 - $\ ^{\ }$ Measure all parameters with B^{\pm} decays
 - Use an additional flavour-tagged D decay sample to determine D model parameters
 - Measurements of binned D-Dalitz plot to determine D model parameters

25 May 2010

Flavour-tagged D decays

- Model $D^0 \to K_S h^+ h^-$ decays using tagged $D^{\star\pm} \to D^0 \pi^{\pm} \text{ events:}$

BaBar Dalitz projections Phys. Rev D **78**,

Phys. Rev D **78**, 034023 (2008)

 Must use decay model to make assumptions about strong phase values – uncertainty

25 May 2010

Flavour-tagged D decays

• BaBar $K_SK^+K^-$ model (others in backups):

	Component	a_r	ϕ_r (deg)	Fraction (%)	Phys. Rev D 78, 034023 (2008)
	$K_S^0 a_0 (980)^0$	1	0	55.8	
	$- K_S^0 \phi(1020)$	0.227 ± 0.005	-56.2 ± 1.0	44.9	
4	$K_S^0 f_0(1370)$	0.04 ± 0.06	-2 ± 80	0.1	
≺o 10000 - (f) _	$K_S^0 f_2(1270)$	0.261 ± 0.020	-9 ± 6	0.3	
7 GeV ² ($K_S^0 a_0(1450)^0$	0.65 ± 0.09	-95 ± 10	12.6	
.4000- , -	$K^{-}a_{0}(980)^{+}$	0.562 ± 0.015	179 ± 3	16.0	
Events	$K^{-}a_{0}(1450)^{+}$	0.84 ± 0.04	97 ± 4	21.8	
$= \frac{1}{1} \frac{1.2}{1.4} \frac{1.6}{1.6} \frac{1.8}{1.8}$ m ² ₆ (GeV ² /c ⁴)	$K^+a_0(980)^-$	0.118 ± 0.015	138 ± 7	0.7	

• Latest BaBar result (468M $B\overline{B}$):

arXiv:hep-ex/1005.1096

 $\gamma = 68^{\circ} \pm 14^{\circ} (\text{stat}) \pm 4^{\circ} (\text{syst}) \pm 3^{\circ} (\text{model})$

• Latest Belle result (657M $B\overline{B}$):

arXiv:hep-ex/1003.3360

 $\gamma = 78.4^{\circ +10.8^{\circ}}_{-11.6^{\circ}}(\text{stat}) \pm 3.6^{\circ}(\text{syst}) \pm 8.9^{\circ}(\text{model})$

25 May 2010

Binned Dalitz analysis

- Divide the Dalitz plot into bins and measure yields in each bin
- Symmetric division of bins about y = x

25 May 2010

D⁰-hadronic decays related to the extraction of γ Chris Thomas – Oxford & RAL – CLEO-c

Binned Dalitz analysis

• Number of B⁺ events in bin *i* has dependence on weighted average cosine and sine of $\Delta \delta_D$ in bin *i*

 $N_i(\mathrm{B}^{\pm} \to (\mathrm{K}^0_{\mathrm{S}}\mathrm{h}^+\mathrm{h}^-)_{\mathrm{D}}\mathrm{K}^{\pm}) \propto T_i + r_B^2 T_{-i} + 2r_B \sqrt{T_i T_{-i}} [\cos(\delta_B \pm \gamma) c_i + \sin(\delta_B \pm \gamma) s_i]$

$$\begin{split} \overline{T_i} &\equiv \int_i |f_{D^0}(x,y)|^2 \,\mathrm{d}x \,\mathrm{d}y \\ \overline{c_i} &\equiv \frac{1}{\sqrt{T_i T_{-i}}} \int_i |f_{D^0}(x,y)| |f_{D^0}(y,x)| \cos(\Delta \delta_D(x,y)) \,\mathrm{d}x \,\mathrm{d}y \\ \overline{s_i} &\equiv \frac{1}{\sqrt{T_i T_{-i}}} \int_i |f_{D^0}(x,y)| |f_{D^0}(y,x)| \sin(\Delta \delta_D(x,y)) \,\mathrm{d}x \,\mathrm{d}y \end{split}$$

• No model error (but increased stat. error)

25 May 2010

Determining c_i and s_i

- c_i and s_i can be measured with quantum-correlated ${\rm K}_{\rm S,L}{\rm h}^+{\rm h}^-$ events at CLEO-c
- $K_{S,L}h^+h^-$ tagged with CP eigenstates can be used to constrain c_i
 - $\,\,{}^{_{\rm D}}$ To first order, $K_{\rm S}h^+h^-\,\text{vs}\,\,\text{CP}\pm\,\,\equiv\,\,K_{\rm L}h^+h^-\,\text{vs}\,\,\text{CP}\mp$
- $K_{S,L}h^+h^-$ tagged with $K_{S,L}h^+h^-$ can be used to constrain c_i and s_i
- Log likelihood used to extract c_i and s_i
- Detailed method and yields in backups

25 May 2010

CLEO-c $K_S\pi^+\pi^-$ Dalitz plots

• Clearly see resonant substructures

25 May 2010

• Quantum correlations in action!

25 May 2010

Dalitz plane binning

• Statistically-sensitive binning is in regions of

 (c_i, s_i) results

25 May 2010

D⁰-hadronic decays related to the extraction of γ Chris Thomas – Oxford & RAL – CLEO-c

Projected impact on γ

- Toy MC study of $B^\pm \to DK^\pm$
 - Large number of B events
 - Use fully correlated c_i and s_i
 - Float r_B , δ_B , γ (initially 0.1, 130°, 60°)
 - Smear & extract distributions

- CLEO-c statistical error (replaces model error)
 - $K_{\rm S}\pi^+\pi^- \sim 1.7^\circ$
 - □ K_SK+K⁻ ~3.7°

BaBar $K_S \pi^+ \pi^-$ & $K_S K^+ K^-$: 3°

Belle
$$K_S \pi^+ \pi^-$$
: 8.9°

25 May 2010

D⁰-hadronic decays related to the extraction of γ Chris Thomas – Oxford & RAL – CLEO-c

ADS + GLW method

Atwood, Dunietz, Soni

Gronau, London, Wyler

• D decays to two-body non-CP eigenstate

25 May 2010

ADS + GLW method

• Four permutations of B^\pm and $K^\pm\pi^\mp$:

 $\Gamma(\mathbf{B}^{+} \to (\mathbf{K}^{+}\pi^{-})_{\mathbf{D}}\mathbf{K}^{+}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cdot \cos(\delta_{B} + \gamma - \delta_{D}^{K\pi})$ $\Gamma(\mathbf{B}^{+} \to (\mathbf{K}^{-}\pi^{+})_{\mathbf{D}}\mathbf{K}^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cdot \cos(\delta_{B} + \gamma + \delta_{D}^{K\pi})$ $\Gamma(\mathbf{B}^{-} \to (\mathbf{K}^{+}\pi^{-})_{\mathbf{D}}\mathbf{K}^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cdot \cos(\delta_{B} - \gamma + \delta_{D}^{K\pi})$ $\Gamma(\mathbf{B}^{-} \to (\mathbf{K}^{-}\pi^{+})_{\mathbf{D}}\mathbf{K}^{-}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cdot \cos(\delta_{B} - \gamma - \delta_{D}^{K\pi})$

DCS/CF magnitude ratio Strong phase

$$r_D^{K\pi} e^{i \delta_D^{K\pi}} \equiv \frac{\mathcal{A}(D^0 \to K^+ \pi^-)}{\mathcal{A}(D^0 \to K^- \pi^+)}$$

• Strong phase world average (HFAG): $\delta_D^{K\pi} = (26.4^{+9.6}_{-9.9})^\circ$

• Input from B-factory mixing measurements & CLEO-c (281pb⁻¹): CP- and flavour-tagged $K^{\pm}\pi^{\mp}$

25 May 2010

 $D^{0}\mbox{-hadronic decays related to the extraction of }\gamma$ Chris Thomas – Oxford & RAL – CLEO-c

Phys. Rev. D **78**, 012001 (2008) 30

http://www.slac.stanford.edu/xorg/hfag

Multibody ADS method

• D decays to three or more bodies

25 May 2010

Multibody ADS method

- Multibody decays can typically occur via intermediate resonances
 - $\, {}_{^{\rm o}}\,$ e.g. $K^-\pi^+\pi^+\pi^-$ can be produced via K(1270)- π^+
- Unlike the case of two bodies, the D⁰ decay amplitude varies across phase space
- Each intermediate resonance has a different amplitude and phase
- Does one resonance dominate, or are there several with ~equal contributions?

Coherence factor

• Coherence factor $R_{K3\pi}$ can classify intermediate resonances:

No single resonance dominates

A single resonance dominates

 $0 \leq R_{K3\pi} \leq 1$

Intermediate resonances are out of phase

Intermediate resonances are in phase

25 May 2010

Coherence factor

• Rate equations:

$$\begin{split} &\Gamma(\mathbf{B}^{+} \to (\mathbf{K}^{+}\pi^{-}\pi^{+}\pi^{-})_{\mathbf{D}}\mathbf{K}^{+}) \propto 1 + (r_{B}r_{D}^{K3\pi})^{2} + 2R_{K3\pi}r_{B}r_{D}^{K3\pi} \cdot \cos(\delta_{B} + \gamma - \delta_{D}^{K3\pi}) \\ &\Gamma(\mathbf{B}^{+} \to (\mathbf{K}^{-}\pi^{+}\pi^{+}\pi^{-})_{\mathbf{D}}\mathbf{K}^{+}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2R_{K3\pi}r_{B}r_{D}^{K3\pi} \cdot \cos(\delta_{B} + \gamma + \delta_{D}^{K3\pi}) \\ &\Gamma(\mathbf{B}^{-} \to (\mathbf{K}^{+}\pi^{-}\pi^{+}\pi^{-})_{\mathbf{D}}\mathbf{K}^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2R_{K3\pi}r_{B}r_{D}^{K3\pi} \cdot \cos(\delta_{B} - \gamma + \delta_{D}^{K3\pi}) \\ &\Gamma(\mathbf{B}^{-} \to (\mathbf{K}^{-}\pi^{+}\pi^{+}\pi^{-})_{\mathbf{D}}\mathbf{K}^{-}) \propto 1 + (r_{B}r_{D}^{K3\pi})^{2} + 2R_{K3\pi}r_{B}r_{D}^{K3\pi} \cdot \cos(\delta_{B} - \gamma - \delta_{D}^{K3\pi}) \\ \end{split}$$

- $R_{K3\pi} \sim 1$: sensitive to γ
- $R_{K3\pi} \sim 0$: lose sensitivity to γ , but obtain good constraint on r_B
- Similarly for $R_{K\pi\pi^{0}}$ etc.

25 May 2010

D⁰-hadronic decays related to the extraction of γ Chris Thomas – Oxford & RAL – CLEO-c

Measurement at CLEO-c

 As with two-body ADS, external constraints on D⁰-decay parameters can be provided by quantum-correlated CLEO-c data Phys. Rev. D 80, 031105(R) (2009)

Measurement at CLEO-c

 Double-tagged yields are sensitive to various permutations of coherence factors and strong phases:

Double-tag yield	Sensitive to
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs $K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$R_{K3\pi}^{2}$
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs $K^{\pm}\pi^{\mp}$	$R_{K\!3\pi}\cos(\delta^{K\!3\pi}-\delta^{K\pi})$
$\mathrm{K}^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs $\mathrm{K}^{\pm}\pi^{\mp}\pi^{0}$	$R_{K3\pi} R_{K\pi\pi^0} \cos(\delta^{K3\pi} - \delta^{K\pi\pi^0})$
$\mathrm{K}^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs CP	$R_{K\!3\pi}\cos(\delta^{K\!3\pi})$

• 818 pb⁻¹ data used; yields in backups

25 May 2010

CLEO-c results

Highly coherent

Low coherence

25 May 2010

Projected impact on γ

- Invaluable additional input for LHCb $\boldsymbol{\gamma}$ extraction
- Coherence factors, and $\delta_D^{K\pi}$ constraint, provide additional sensitivity equivalent to doubling the $B\overline{B}$ dataset for 2 fb⁻¹ LHCb-2008-031 public note

The future

- At CLEO-c:
 - K[±]π[∓] quantum-correlated analysis to be updated with full statistics (results expected autumn)
 - $\hfill K_S K^+ K^-$ analysis to be finalised
 - $\,\,$ Update of $K_S\pi^+\pi^-$ analysis with newer BaBar amplitude model, Belle model, and statistically optimised binnings
 - ${}^{_{\rm D}}$ Coherence factor analysis of $K_S K^\pm \pi^\mp$
- BES-III $\psi(3770)$ physics program
- D^0 results can be used in LHCb, etc.

Conclusions

- D⁰-hadronic decays play an important role in the precise measurement of γ
- Quantum correlations at CLEO-c enable precise measurement of D decay parameters
- BES-III taking data at $\psi(3770)$
- Dalitz analyses of $K_{S}\pi^{+}\pi^{-}$ and $K_{S}K^{+}K^{-}$
- ADS methods $K^{\pm}\pi^{\mp}$, $K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$, $K^{\pm}\pi^{\mp}\pi^{0}$
- Critical input for precise determination of γ at LHCb and future e^+e^- machines
- Combination of measurements, 10 fb⁻¹ LHCb data:

 $\sigma_{\gamma} \sim (1.9 - 2.7)^{\circ}$ LHCb-2008-031 public note

D⁰-hadronic decays related to the extraction of γ Chris Thomas – Oxford & RAL – CLEO-c Backups

25 May 2010

Influence on γ precision

• ADS method

LHCb-2008-031 public note

25 May 2010

D⁰-hadronic decays related to the extraction of γ Chris Thomas – Oxford & RAL – CLEO-c

BaBar $K_{\!S}\pi^+\pi^-$ model

TABLE II. CA, DCS, and *CP* eigenstates complex amplitudes $a_r e^{i\phi_r}$, $\pi\pi$ S-wave *P*-vector parameters, $K\pi$ S-wave parameters, and fit fractions, as obtained from the fit of the $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ Dalitz plot distribution from $D^{*+} \rightarrow D^0 \pi^+$. *P*-vector parameters f_{1v}^{prod} , for $v \neq 1$, are defined as $f_{1v}^{\text{prod}}/f_{11}^{\text{prod}}$. Errors for amplitudes are statistical only, while for fit fractions include statistical and systematic uncertainties, largely dominated by the latter. Upper limits on fit fractions are quoted at 95% confidence level.

Component	a _r		ϕ_r (deg)	Fraction (%)	
K*(892)-	1.740 ± 0.010		139.0 ± 0.3	55.7 ± 2.8	
$K_0^*(1430)^-$	8.2 ± 0.7		153 ± 8	10.2 ± 1.5	
$K_2^*(1430)^-$	1.410 ± 0.022		138.4 ± 1.0	2.2 ± 1.6	
$K^{*}(1680)^{-}$	1.46 ± 0.10		-174 ± 4	0.7 ± 1.9	
$K^{*}(892)^{+}$	0.158 ± 0.003		-42.7 ± 1.2	0.46 ± 0.23	
$K_0^*(1430)^+$	0.32 ± 0.06		143 ± 11	< 0.05	
$K_2^*(1430)^+$	0.091 ± 0.016		85 ± 11	< 0.12	
$\rho(770)^{0}$	1		0	21.0 ± 1.6	
ω(782)	0.0527 ± 0.0007		126.5 ± 0.9	0.9 ± 1.0	
$f_2(1270)$	0.606 ± 0.026		157.4 ± 2.2	0.6 ± 0.7	
β_1	9.3 ± 0.4		-78.7 ± 1.6		
β_2	10.89 ± 0.26		-159.1 ± 2.6		
β_3	24.2 ± 2.0		168 ± 4		
β_4	9.16 ± 0.24		90.5 ± 2.6		
f_{11}^{prod}	7.94 ± 0.26		73.9 ± 1.1		
$f_{12}^{\text{/prod}}$	2.0 ± 0.3		-18 ± 9		
$f_{13}^{\prime \text{prod}}$	5.1 ± 0.3		33 ± 3		
f ^{/prod}	3.23 ± 0.18		4.8 ± 2.5		
s ₀ ^{prod}		-0.07 ± 0.03			
$\pi\pi S$ wave				11.9 ± 2.6	
$M (\text{GeV}/c^2)$		1.463 ± 0.002			
$\Gamma (\text{GeV}/c^2)$		0.233 ± 0.005			
F		0.80 ± 0.09			
ϕ_F		2.33 ± 0.13			
R		1			
ϕ_R		-5.31 ± 0.04			Dhua Day D
a		1.07 ± 0.11			Flys. Rev D
r		-1.8 ± 0.3			034023 (2008

25 May 2010

Belle $K_{\rm S}\pi^+\pi^-$ model

TABLE I: Fit results for $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$ decay. Errors are statistical only.

Intermediate state	Amplitude	Phase (°)	Fit fraction $(\%)$
$K_S \sigma_1$	1.56 ± 0.06	214 ± 3	11.0 ± 0.7
$K_S \rho^0$	1.0 (fixed)	0 (fixed)	21.2 ± 0.5
$K_S \omega$	0.0343 ± 0.0008	112.0 ± 1.3	0.526 ± 0.014
$K_S f_0(980)$	0.385 ± 0.006	207.3 ± 2.3	4.72 ± 0.05
$K_S \sigma_2$	0.20 ± 0.02	212 ± 12	0.54 ± 0.10
$K_S f_2(1270)$	1.44 ± 0.04	342.9 ± 1.7	1.82 ± 0.05
$K_S f_0(1370)$	1.56 ± 0.12	110 ± 4	1.9 ± 0.3
$K_{S}\rho^{0}(1450)$	0.49 ± 0.08	64 ± 11	0.11 ± 0.04
$K^*(892)^+\pi^-$	1.638 ± 0.010	133.2 ± 0.4	62.9 ± 0.8
$K^*(892)^-\pi^+$	0.149 ± 0.004	325.4 ± 1.3	0.526 ± 0.016
$K^*(1410)^+\pi^-$	0.65 ± 0.05	120 ± 4	0.49 ± 0.07
$K^*(1410)^-\pi^+$	0.42 ± 0.04	253 ± 5	0.21 ± 0.03
$K_0^*(1430)^+\pi^-$	2.21 ± 0.04	358.9 ± 1.1	7.93 ± 0.09
$K_0^*(1430)^-\pi^+$	0.36 ± 0.03	87 ± 4	0.22 ± 0.04
$K_2^*(1430)^+\pi^-$	0.89 ± 0.03	314.8 ± 1.1	1.40 ± 0.06
$K_2^*(1430)^-\pi^+$	0.23 ± 0.02	275 ± 6	0.093 ± 0.014
$K^*(1680)^+\pi^-$	0.88 ± 0.27	82 ± 17	0.06 ± 0.04
$K^*(1680)^-\pi^+$	2.1 ± 0.2	130 ± 6	0.30 ± 0.07
non-resonant	2.7 ± 0.3	160 ± 5	5.0 ± 1.0

arXiv:hep-ex/1003.3360

25 May 2010

Determining c_i and s_i

- c_i and s_i can be measured with quantum-correlated ${\rm K}_{\rm S,L}{\rm h}^+{\rm h}^-$ events at CLEO-c
- CP-tagged data can be used to constrain c_i

D⁰-hadronic decays related to the extraction of γ Chris Thomas – Oxford & RAL – CLEO-c

Determining c_i and s_i

• $K_{S,L}h^+h^-$ tagged with $K_{S,L}h^+h^-$ can be used to constrain c_i and s_i

• Log likelihood used to extract c_i and s_i

25 May 2010

ADS: input from charm physics

- Use external input of $\delta^{K\pi}$ to guide fit at B-physics experiments
- Current world average (HFAG):
 - B-factory mixing measurements
 - Input from CLEO-c (TQCA)
- TQCA: Phys. Rev. D 78, 012001 (2008)
 - 281 pb⁻¹ data used (to be updated)

 - Rate ~ $\mathcal{B}_{CP}\mathcal{B}_{K\pi}(1+2r^{K\pi}\delta^{K\pi}+...)$

Quantum correlation observed! 25 May 2010 D⁰-hadronic decays related to the extraction of γ Chris Thomas – Oxford & RAL – CLEO-c

$$\delta_D^{K\pi} = (26.4^{+9.6}_{-9.9})^{\circ}$$

arXiv:hep-ex/0808.1297 http://www.slac.stanford.edu/xorg/hfag

Coherence factors

 Coherence factor results normalised to incoherent expectation

Chris Thomas – Oxford & RAL – CLEO-c

Yields in Dalitz plot analyses

Tag group	$K_S \pi^+ \pi^-$	$K_SK^+K^-$	$K_L \pi^+ \pi^-$	$K_L K^+ K^-$
CP+	471	50	517	59
CP-	786	46	322	64
Flavour	7829	745	12098	1174
$K_S \pi^+ \pi^-$	475	56	867	126
$K_L \pi^+ \pi^-$		140		
$K_SK^+K^-$		4		9

25 May 2010

Yields in TQCA

Mode	Yield	Efficiency (%)
$K^{-}\pi^{+}, K^{-}\pi^{+}$	$2.0\pm1.4\pm0$	36.1 ± 3.4
$K^{-}\pi^{+}, K^{+}\pi^{-}$	$600\pm25\pm5$	41.1 ± 0.2
$K^{-}\pi^{+}, K^{+}K^{-}$	$71\pm8\pm1$	35.5 ± 0.6
$K^{-}\pi^{+}, \pi^{+}\pi^{-}$	$24\pm5\pm1$	44.4 ± 1.1
$K^{-}\pi^{+}, K^{0}_{S}\pi^{0}\pi^{0}$	$32\pm 6\pm 1$	8.0 ± 0.3
$K^{-}\pi^{+}, K^{0}_{S}\pi^{0}$	$88\pm9\pm1$	18.4 ± 0.3
$K^{-}\pi^{+}, K^{0}_{S}\eta$	$8.0\pm2.8\pm0.0$	6.0 ± 0.3
$K^-\pi^+, K^0_S\omega$	$29\pm5\pm0$	8.7 ± 0.2
$K^{+}\pi^{-}, K^{+}\pi^{-}$	$2.0\pm1.4\pm0.0$	44.1 ± 3.3
$K^+\pi^-, K^+K^-$	$54\pm7\pm0$	36.1 ± 0.6
$K^{+}\pi^{-}, \pi^{+}\pi^{-}$	$25\pm5\pm1$	48.1 ± 1.1
$K^{+}\pi^{-}, K^{0}_{S}\pi^{0}\pi^{0}$	$33\pm 6\pm 0$	8.0 ± 0.3
$K^{+}\pi^{-}, K_{S}^{0}\pi^{0}$	$76\pm9\pm0$	18.6 ± 0.3
$K^{+}\pi^{-}, K^{0}_{S}\eta$	$9\pm3\pm0$	6.1 ± 0.3
$K^+\pi^-, K^0_S\omega$	$33\pm 6\pm 1$	8.0 ± 0.2
$K^{+}K^{-}, K^{0}_{S}\pi^{0}$	$39\pm 6\pm 1$	17.1 ± 0.6
$K^{+}K^{-}, K^{0}_{S}\eta$	$7.0\pm2.7\pm0.0$	7.1 ± 0.8
$K^+K^-, K^{\overline{0}}_S\omega$	$20\pm4\pm0$	6.8 ± 0.4
$\pi^{+}\pi^{-}, K^{0}_{S}\pi^{0}$	$13\pm4\pm0$	19.2 ± 1.2
$\pi^{+}\pi^{-}, K_{S}^{0}\eta$	$2.0\pm1.4\pm0.0$	8.1 ± 1.4
$\pi^{+}\pi^{-}, K_{S}^{0}\omega$	$7.0\pm2.7\pm0.0$	9.9 ± 0.9
$K^{0}_{S}\pi^{0}\pi^{0}, K^{0}_{S}\pi^{0}$	$14\pm4\pm0$	3.5 ± 0.2
$K_S^{\widetilde{0}}\pi^0\pi^0, K_S^{\widetilde{0}}\eta$	$4.0\pm2.0\pm0.0$	1.2 ± 0.2
$K^{ar{0}}_S\pi^0\pi^0, K^{ar{0}}_S\omega$	$4.0\pm2.0\pm0.0$	1.4 ± 0.2

25 May 2010

Yields in coherence factor analyses

Mode	$K^{\pm}\pi^{\mp}\pi^{\mp}\pi^{\pm}$	$K^{\pm}\pi^{\mp}\pi^{0}$	$K^{\pm}\pi^{\mp}$
$K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}$	$4,044\pm 64$	_	_
$K^{\pm}\pi^{\mp}\pi^{\mp}\pi^{\pm}$	29.1 ± 5.9	_	_
$K^{\mp}\pi^{\pm}\pi^{0}$	$9,594\pm99$	$7,342\pm87$	_
$K^{\pm}\pi^{\mp}\pi^{0}$	63.6 ± 8.8	12.5 ± 4.1	_
$K^{\mp}\pi^{\pm}$	$5,206\pm72$	$7,155\pm85$	_
$K^{\pm}\pi^{\mp}$	35.6 ± 6.2	7.3 ± 3.3	_
K^+K^-	536 ± 23	764 ± 28	_
$\pi^+\pi^-$	246 ± 16	336 ± 18	_
$K^0_S \pi^0 \pi^0$	283 ± 18	406 ± 21	221 ± 15
$K_L^0 \pi^0$	827 ± 30	$1,236\pm38$	689 ± 28
$K^0_L \omega$	296 ± 18	449 ± 22	251 ± 17
$K_S^0 \pi^0$	705 ± 27	891 ± 30	473 ± 22
$K^0_S \omega$	319 ± 19	389 ± 21	183 ± 14
$K_S^0 \phi$	53.0 ± 7.5	90.9 ± 9.9	42.8 ± 6.9
$K^0_S \eta(\gamma\gamma)$	128 ± 12	116 ± 11	65.5 ± 8.3
$K^0_S \eta(\pi^+\pi^-\pi^0)$	35.9 ± 6.5	36.3 ± 7.2	27.2 ± 5.4
$K^0_S \eta'$	35.7 ± 6.0	60.6 ± 7.8	30.0 ± 5.5

Phys. Rev. D **80**, 031105(R) (2009)

25 May 2010