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Introduction

Lattice now delivers unquenched (2+1 flavor) determinations for all quantities
that enter the UT fit.

Several groups now have results for various quantities. Averages are
necessary!
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Nonperturbative input needed

ǫK = (known factor) (CKM factor)(QCD factor) (1)
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Lattice QCD

Allows non-perturbative calculations from first principles

Can be simulated on a computer using Monte Carlo methods

Calculations require a finite-sized grid with lattice spacing a and size L

Still very expensive! Large supercomputers are needed.
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Types of Errors

Because QCD with physical quark masses is a nonlinear multiscale problem
(ΛQCD ≈ 100 − 200 MeV, mu,d ≈ 2 − 6 MeV, mb ≈ 4.3 GeV), it is very
expensive to simulate at the physical quark masses.

1.) Statistics and fitting

2.) Tuning lattice spacing, a, and quark masses

3.) Matching lattice gauge theory to continuum QCD

4.) Extrapolation to continuum

5.) Chiral extrapolation to physical up, down quark masses

6.) Quenching. Uncontrolled!
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Quenched Approximation

Configurations are generated with a weighting given by the gauge field and
fermion determinant. Including the fermion determinant in this weighting is the
most computationally demanding step in lattice QCD.

The quenched approximation ignores fermion-antifermion vacuum bubbles.
This is an uncontrolled systematic error.

“Unquenched” calculations, where the fermion determinant is included, are
now the norm.
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Unquenching Lattice QCD
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Hadron spectroscopy – masses and decay constants (hep-lat/0304004)

Good agreement for simple quantities!
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Quenching the strange quark

Strange threshold lies in the nonperturbative regime.

Most quantities show no difference with 2+1 flavor results, with precision
at the 3-5% level.

Error is difficult to estimate. Could be as much as 5%, and only sure way
to quantify it is to compare with 2+1 flavor results.

Since the lattice world averages are approaching the level where
quenching the strange is likely to be important, we do not include 2 flavor
results in our averages.
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Quenching the charm quark

The charm threshold lies above the nonperturbative regime.

Error due to neglecting charm can be estimated by Heavy Quark
Effective Theory, αs(Λ/mc)

2

This is O(1%). (Likely smaller for specially constructed ratios.)

New lattice calculations from MILC and ETM Collaborations are being
done with 2+1+1 flavors and will address this issue.
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Rooted staggered quarks

Cheapest fermions on the market at the present time

Many 3 flavor calculations use staggered quarks

The staggered action has extra unphysical species of fermions (called
“tastes”) due to lattice artifacts which vanish in the continuum limit. There
is no rigorous proof that staggered quarks recover QCD in the continuum
limit. There has been much recent theoretical progress, and the recovery
of the correct continuum limit appears plausible. (Sharpe,
hep-lat/0610094; Kronfeld, arXiv:0711.0699.)

Extra “tastes” complicate the analysis with staggered fermions, as
compared to “chiral” fermions such as domain-wall or overlap, which are
many times more expensive.

Staggered chiral perturbation theory gives good control over staggered
discretization effects (MILC, arXiv:hep-lat/0407028). If rooting is correct,
the error is incorporated into the chiral extrapolation error.
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Effective field theories

Effective field theories can be used to quantify systematic errors due to
extrapolations in light quark masses (chiral perturbation theory), or the
treatment of heavy-quarks like charm and bottom (Heavy-Quark Effective
Theory).

Symanzik effective theory can be used to quantify systematic errors due to
finite-lattice spacing.
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Chiral perturbation theory

Chiral perturbation theory (ChPT) is an expansion about small quark masses
and momenta.

At each order new terms must be introduced to cancel the renormalization
scale dependence. These terms are not determined within ChPT.

When combined with lattice calculations, these constants can be determined.

It is possible to account for lattice artifacts in the ChPT by introducing the
appropriate symmetry breaking terms in the chiral lagrangian (finite lattice
spacing) or restricting the Feynman integrals to finite volume.
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Chiral Extrapolation
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Heavy quarks on the lattice

The lattice cut-off is smaller than the heavy quark masses for realistic lattices.
The solution(s): heavy quark effective theory(HQET) or nonrelativistic QCD

Fermilab Method:

Continuum QCD → Lattice gauge theory
(using HQET)

nonrelativistic QCD method:

Continuum QCD → Nonrelativistic QCD → Lattice gauge theory

Both methods require tuning parameters of the lattice action

The currents and 4-quark operators must be matched as well. Typically
this is done in lattice perturbation theory.
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Other Approaches

The extrapolation method (Becirevic, et al, hep-lat/0002025; QCDSF,
hep-lat/0701015):

In this case one simulates at masses around the charm quark (or heavier) and
extrapolates to bottom with fit functions motivated by HQET.

The step-scaling method (Guazzini, Sommer, and Tantalo, hep-lat/0609065):

One starts with a small volume where the b quark can be computed directly,
where the finite size effects can be eliminated through step scaling functions
which give the change of the observables when L is changed to 2L.
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Matching Errors

One must estimate errors due to inexact matching of the lattice to the
continuum.

In the Fermilab method, all errors associated with discretizing the action are
combined. These errors are then estimated using knowledge of HQET power
counting.

In the nonrelativistic QCD method, there are “relativistic errors” associated with
using NRQCD [O(αsΛQCD/mQ), O(Λ2

QCD/m2
Q)], and “perturbation theory

errors” associated with matching NRQCD to the lattice [O(α2
s)].
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Treatment of correlations

We don’t have a complete correlation matrix between various lattice
calculations. We combine lattice errors with the following assumptions:

Whenever a source of error is at all correlated between two lattice
calculations, we assign the degree-of-correlation a value of 100%.

This assumption is conservative, and will lead to an overestimate in the
total error of the averages.

It still takes better advantage of the available results then assigning the
smallest systematic error of any of the individual lattice calculations
appearing in the average.

For example, statistical errors of results derived from the same ensemble of
configurations are treated as 100% correlated. A perturbative matching
calculation between common schemes (for BK) is treated as 100% correlated,
since this leads to the same renormalization factor.
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Treatment of correlations

A ± δA1 ± δA2 ± δA3 = A ± δA

B ± δB1 ± δB2 ± δB3 = B ± δB

C ± δC1 ± δC2 ± δC3 = C ± δC (3)

Suppose (δA2, δB2) and (δB3, δC3) are 100% correlated and δX2 =
P

(δXi)
2.

Then the covariance matrix Cij is

0
B@

δA2 δA2δB2 0

δA2δB2 δB2 δB3δC3

0 δB3δC3 δC2

1
CA (4)

Following Schmelling, Phys. Scripta 51, 676 (1995), we take

xavg =
X

ωixi, δxavg =
X

ωiCijωj , (5)

where the quantities being averaged are xi ± σi and ωi = σ−2
i /

P
σ−2

j
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An example: fK/fπ

1.15 1.2 1.25 1.3
f
K

/fπ

HPQCD/UKQCD ’07
RBC/UKQCD ’08
ALV ’08
MILC ’09
BMW ’10

fK/fπ = 1.1925 ± 0.0056
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PDG prescription

We adopt the PDG prescription to combine several measurements whose
spread is wider than what is expected from the quoted errors.

The error on the average is rescaled by the square root of the minimum of the
chi-square per degree of freedom:

qX
(xi − xavg)(C−1)ij(xj − xavg)/(n − 1) (6)
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fD+, fDs

235 240 245 250 255 260 265 270 275
f
D

s
 (MeV)

HPQCD/UKQCD ’07
FNAL/MILC ’09

200 205 210 215 220 225 230
f
D

 (MeV)

HPQCD/UKQCD ’07
FNAL/MILC ’09

fDs
= 242.8 ± 6.0 MeV, fD = 208.1 ± 3.7 MeV.
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fB, fBs

fBs
= 238.8 ± 9.5, fB = 192.8 ± 9.9 MeV.
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ξ

1 1.05 1.1 1.15 1.2 1.25 1.3

ξ

FNAL/MILC ’08
HPQCD ’09
HPQCD ’09

ξ = 1.237 ± 0.032.
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BK

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

B̂
K

HPQCD/UKQCD ’06
RBC/UKQCD ’07
ALV ’09
SBW ’09

bBK = 0.720 ± 0.025
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|Vcb|

37 37.5 38 38.5 39 39.5 40 40.5 41 41.5 42 42.5 43 43.5 44

|V
cb

| x 10
-3

B->Dlν: FNAL/MILC ’04
B -> D

*
lν: FNAL/MILC ’08

|Vcb| = (39.0 ± 1.2) × 10−3
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|Vub|
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HPQCD ’06
FNAL/MILC ’08

|Vub| = (3.09 ± 0.33) × 10−3
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Conclusion

Tension in fit to UT triangle. See Enrico’s talk later in this session...

For latest averages, see www.latticeaverages.org
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